Do you want to publish a course? Click here

F-resolved Magneto-optical Resonances at D1 Excitation of Cesium: Experiment and Theory

230   0   0.0 ( 0 )
 Added by Florian Gahbauer
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bright and dark nonlinear magneto-optical resonances associated with the ground state Hanle effect have been studied experimentally and theoretically for D1 excitation of atomic cesium. This system offers the advantage that the separation between the different hyperfine levels exceeds the Doppler width, and, hence, transitions between individual levels can be studied separately. Experimental measurements for various laser power densities and transit relaxation times are compared with a model based on the optical Bloch equations, which averages over the Doppler contour of the absorption line and simultaneously takes into account all hyperfine levels, as well as mixing of magnetic sublevels in an external magnetic field. In contrast to previous studies, which could not resolve the hyperfine transitions because of Doppler broadening, in this study there is excellent agreement between experiment and theory regarding the sign (bright or dark), contrast, and width of the resonance. The results support the traditional theoretical interpretation, according to which these effects are related to the relative strengths of transition probabilities between different magnetic sublevels in a given hyperfine transition.



rate research

Read More

Experimental signals of non-linear magneto-optical resonances at D1 excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D1 transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. Great care was taken to obtain accurate experimental signals and avoid systematic errors. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F_g=1 --> F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position of the transition due to the influence of the nearby F_g=2 --> F_e=2 transition, which is a dark resonance whose contrast is almost two orders of magnitude larger than the contrast of the bright resonance at the F_g=2 --> F_e=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.
We present and experimental and theoretical study of nonlinear magneto-optical resonances observed in the fluorescence to the ground state from the 7P_{3/2} state of cesium, which was populated directly by laser radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were populated via cascade transitions that started from the 7P_{3/2} state and passed through various intermediate states. The laser-induced fluorescence (LIF) was observed as the magnetic field was scanned through zero. Signals were recorded for the two orthogonal, linearly polarized components of the LIF. We compared the measured signals with the results of calculations from a model that was based on the optical Bloch equations and averaged over the Doppler profile. This model was adapted from a model that had been developed for D_1 and D_2 excitation of alkali metal atoms. The calculations agree quite well with the measurements, especially when taking into account the fact that some experimental parameters were only estimated in the model.
205 - M. Auzinsh 2009
Nonlinear magneto-optical resonances have been measured in an extremely thin cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural isotopic composition. All hyperfine transitions of both isotopes have been studied for a wide range of laser power densities, laser detunings, and ETC wall separations. Dark resonances in the laser induced fluorescence (LIF) were observed as expected when the ground state total angular momentum F_g was greater than or equal to the excited state total angular momentum F_e. Unlike the case of ordinary cells, the width and contrast of dark resonances formed in the ETC dramatically depended on the detuning of the laser from the exact atomic transition. A theoretical model based on the optical Bloch equations was applied to calculate the shapes of the resonance curves. The model averaged over the contributions from different atomic velocity groups, considered all neighboring hyperfine transitions, took into account the splitting and mixing of magnetic sublevels in an external magnetic field, and included a detailed treatment of the coherence properties of the laser radiation. Such a theoretical approach had successfully described nonlinear magneto-optical resonances in ordinary vapor cells. Although the values of certain model parameters in the ETC differed significantly from the case of ordinary cells, the same physical processes were used to model both cases. However, to describe the resonances in the ETC, key parameters such as the transit relaxation rate and Doppler width had to be modified in accordance with the ETCs unique features. Agreement between the measured and calculated resonance curves was satisfactory for the ETC, though not as good as in the case of ordinary cells.
We have measured magneto-optical signals obtained by exciting the $D_1$ line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than one micrometer, and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions with relaxation rates that were obtained directly from the thermal velocities of the atoms and the length scales involved. Furthermore, the interaction of the atoms with different regions of the laser beam were modeled separately to account for the varying laser beam intensity over the beam profile as well as saturation effects that become important near the center of the beam at the relatively high laser intensities used during the experiments in order to obtain measurable signals. The model described the experimentally measured signals for laser intensities for magnetic fields up to 55~G and laser intensities up to 1~W/cm$^2$ with excellent agreement.
Experimental and theoretical studies are presented related to the ground-state magneto-optical resonance prepared in Cesium vapour confined in an Extremely Thin Cell (ETC, with thickness equal to the wavelength of the irradiating light). It is shown that the utilization of the ETC allows one to examine the formation of a magneto-optical resonance on the individual hyperfine transitions, thus distinguishing processes resulting in dark (reduced absorption) or bright (enhanced absorption) resonance formation. We report on an experimental evidence of the bright magneto-optical resonance sign reversal in Cs atoms confined in the ETC. A theoretical model is proposed based on the optical Bloch equations that involves the elastic interaction processes of atoms in the ETC with its walls resulting in depolarization of the Cs excited state which is polarized by the exciting radiation. This depolarization leads to the sign reversal of the bright resonance. Using the proposed model, the magneto-optical resonance amplitude and width as a function of laser power are calculated and compared with the experimental ones. The numerical results are in good agreement with the experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا