Do you want to publish a course? Click here

Impact of loop statistics on the thermodynamics of RNA folding

206   0   0.0 ( 0 )
 Added by Thomas R. Einert
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Loops are abundant in native RNA structures and proliferate close to the unfolding transition. By including a statistical weight ~ l^{-c} for loops of length l in the recursion relation for the partition function, we show that the calculated heat capacity depends sensitively on the presence and value of the exponent c, even of short t-RNA. For homo-RNA we analytically calculate the critical temperature and critical exponents which exhibit a non-universal dependence on c.



rate research

Read More

89 - P. Leoni , C. Vanderzande 2003
We propose a lattice model for RNA based on a self-interacting two-tolerant trail. Self-avoidance and elements of tertiary structure are taken into account. We investigate a simple version of the model in which the native state of RNA consists of just one hairpin. Using exact arguments and Monte Carlo simulations we determine the phase diagram for this case. We show that the denaturation transition is first order and can either occur directly or through an intermediate molten phase.
The folding of a protein towards its native state is a rather complicated process. However there are empirical evidences that the folding time correlates with the contact order, a simple measure of the spatial organisation of the native state of the protein. Contact order is related to the average length of the main chain loops formed by amino acids which are in contact. Here we argue that folding kinetics can be influenced also by the entanglement that loops may undergo within the overall three dimensional protein structure. In order to explore such possibility, we introduce a novel descriptor, which we call maximum intrachain contact entanglement. Specifically, we measure the maximum Gaussian entanglement between any looped portion of a protein and any other non-overlapping subchain of the same protein, which is easily computed by discretized line integrals on the coordinates of the $C_{alpha}$ atoms. By analyzing experimental data sets of two-state and multistate folders, we show that also the new index is a good predictor of the folding rate. Moreover, being only partially correlated with previous methods, it can be integrated with them to yield more accurate predictions.
We construct a minimalist model of RNA secondary-structure formation and use it to study the mapping from sequence to structure. There are strong, qualitative differences between two-letter and four or six-letter alphabets. With only two kinds of bases, there are many alternate folding configurations, yielding thermodynamically stable ground-states only for a small set of structures of high designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average stability of the ground state.
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressure denaturation, or the limits of temperature and pressure above which no protein has a stable, functional state, or how unfolding and aggregation are related. Here we review our results based on a theoretical approach that can rationalise the water contribution to protein solutions free energy. We show, using Monte Carlo simulations, how we can rationalise experimental data with our recent results. We discuss how our findings can help develop new strategies for the design of novel synthetic biopolymers or possible approaches for mitigating neurodegenerative pathologies.
We investigate the crystallization mechanism of a single, flexible homopolymer chain with short range attractions. For a sufficiently narrow attractive well, the system undergoes a first-order like freezing transition from an expanded disordered coil to a compact crystalline state. Based on a maximum likelihood analysis of committor values computed for configurations obtained by Wang-Landau sampling, we construct a non-linear string reaction coordinate for the coil-to-crystal transition. In contrast to a linear reaction coordinate, the string reaction coordinate captures the effect of different degrees of freedom controlling different stages of the transition. Our analysis indicates that a combination of the energy and the global crystallinity parameter Q6 provide the most accurate measure for the progress of the transition. While the crystallinity parameter Q6 is most relevant in the initial stages of the crystallization, the later stages are dominated by a decrease in the potential energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا