Do you want to publish a course? Click here

Signal-to-noise ratio of phase sensing telescope interferometers

127   0   0.0 ( 0 )
 Added by Francois Henault
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is the third part of a trilogy dealing with the principles, performance and limitations of what I named Telescope-Interferometers (TIs). The basic idea consists in transforming one telescope into a Wavefront Error (WFE) sensing device. This can be achieved in two different ways, namely the off axis and phase-shifting TIs. In both cases the Point-Spread Function (PSF) measured in the focal plane of the telescope carries information about the transmitted WFE, which is retrieved by fast and simple algorithms suitable to an Adaptive Optics (AO) regime. Herein are evaluated the uncertainties of both types of TIs, in terms of noise and systematic errors. Numerical models are developed in order to establish the dependence of driving parameters such as useful spectral range, angular size of the observed star, or detector noise on the total WFE measurement error. The latter is found particularly sensitive to photon noise, which rapidly governs the achieved accuracy for telescope diameters higher than 10 m. We study a few practical examples, showing that TI method is applicable to AO systems on telescope diameters ranging from 10 to 50 m, depending on seeing conditions and magnitude of the observed stars. We also discuss the case of a space-borne coronagraph where TI technique provides high sampling of the input WFE map.



rate research

Read More

230 - Francois Henault 2008
Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequently reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named Telescope-Interferometer (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, among which photon noise sounds the most critical. Those computations finally help to define the application range of the TI method in an AO regime, including main and auxiliary telescope diameters and magnitude of the guide star. Some practical examples of optical configurations are also described and commented.
Due to the pervasive nature of decoherence, protection of quantum information during transmission is of critical importance for any quantum network. A linear amplifier that can enhance quantum signals stronger than their associated noise while preserving quantum coherence is therefore of great use. This seemingly unphysical amplifier property is achievable for a class of probabilistic amplifiers that does not work deterministically. Here we present a linear amplification scheme that realises this property for coherent states by combining a heralded measurement-based noiseless linear amplifier and a deterministic linear amplifier. The concatenation of two amplifiers introduces the flexibility that allows one to tune between the regimes of high-gain or high noise-reduction, and control the trade-off of these performances against a finite heralding probability. We demonstrate an amplification signal transfer coefficient of $mathcal{T}_s > 1$ with no statistical distortion of the output state. By partially relaxing the demand of output Gaussianity, we can obtain further improvement to achieve a $mathcal{T}_s = 2.55 pm 0.08$. Our amplification scheme only relies on linear optics and post-selection algorithm. We discuss the potential of using this amplifier as a building block in extending the distance of quantum communication.
Intensity interferometry is a well known method in astronomy. Recently, a related method called incoherent diffractive imaging (IDI) was proposed to apply intensity correlations of x-ray fluorescence radiation to determine the 3D arrangement of the emitting atoms in a sample. Here we discuss inherent sources of noise affecting IDI and derive a model to estimate the dependence of the signal to noise ratio (SNR) on the photon counts per pixel, the temporal coherence (or number of modes), and the shape of the imaged object. Simulations in two- and three-dimensions have been performed to validate the predictions of the model. We find that contrary to coherent imaging methods, higher intensities and higher detected counts do not always correspond to a larger SNR. Also, larger and more complex objects generally yield a poorer SNR despite the higher measured counts. The framework developed here should be a valuable guide to future experimental design.
We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsars stochastic radio signal. That is, as the peak flux of the pulsar approaches that of the system equivalent flux density, neither greater antenna gain nor increased instrumental bandwidth will improve timing precision. These conclusions proceed from an analysis of the covariance matrix used to characterise residual pulse profile fluctuations following the template matching procedure for arrival time estimation. We perform such an analysis on 25 hours of high-precision timing observations of the closest and brightest millisecond pulsar, PSR J0437-4715. In these data, the standard deviation of the post-fit arrival time residuals is approximately four times greater than that predicted by considering the system equivalent flux density, mean pulsar flux and the effective width of the pulsed emission. We develop a technique based on principal component analysis to mitigate the effects of shape variations on arrival time estimation and demonstrate its validity using a number of illustrative simulations. When applied to our observations, the method reduces arrival time residual noise by approximately 20%. We conclude that, owing primarily to the intrinsic variability of the radio emission from PSR J0437-4715 at 20 cm, timing precision in this observing band better than 30 - 40 ns in one hour is highly unlikely, regardless of future improvements in antenna gain or instrumental bandwidth. We describe the intrinsic variability of the pulsar signal as stochastic wideband impulse modulated self-noise (SWIMS) and argue that SWIMS will likely limit the timing precision of every millisecond pulsar currently observed by Pulsar Timing Array projects as larger and more sensitive antennae are built in the coming decades.
81 - C. Guo , M. Favier , N. Galland 2020
We demonstrate a method for accurately locking the frequency of a continuous-wave laser to an optical frequency comb in conditions where the signal-to-noise ratio is low, too low to accommodate other methods. Our method is typically orders of magnitude more accurate than conventional wavemeters and can considerably extend the usable wavelength range of a given optical frequency comb. We illustrate our method by applying it to the frequency control of a dipole lattice trap for an optical lattice clock, a representative case where our method provides significantly better accuracy than other methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا