Do you want to publish a course? Click here

Bronsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces

169   0   0.0 ( 0 )
 Added by B. Svaiter F.
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Bronsted-Rockafellar type property. We show that if a function in XxX^* and its conjugate are above the duality product in their respective domains, then this function represents a maximal monotone operator.



rate research

Read More

We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a non-reflexive space we characterize maximality using a ``enlarged version of the duality mapping, introduced previously by Gossez.
230 - Piotr Mikusinski 2014
The purpose of this article is to present the construction and basic properties of the general Bochner integral. The approach presented here is based on the ideas from the book The Bochner Integral by J. Mikusinski where the integral is presented for functions defined on $mathbb{R}^N$. In this article we present a more general and simplified construction of the Bochner integral on abstract measure spaces. An extension of the construction to functions with values in a locally convex space is also considered.
We study functions of bounded variation (and sets of finite perimeter) on a convex open set $Omegasubseteq X$, $X$ being an infinite dimensional real Hilbert space. We relate the total variation of such functions, defined through an integration by parts formula, to the short-time behaviour of the semigroup associated with a perturbation of the Ornstein--Uhlenbeck operator.
128 - B. F. Svaiter 2012
We study the relations between some geometric properties of maximal monotone operators and generic geometric and analytical properties of the functions on the associate Fitzpatrick family of convex representations. We also investigate under which conditions a convex function represents a maximal monotone operator with bounded range and provide an example of a non type (D) operator on this class.
We construct a family $(mathcal{X}_al)_{alle omega_1}$ of reflexive Banach spaces with long transfinite bases but with no unconditional basic sequences. In our spaces $mathcal{X}_al$ every bounded operator $T$ is split into its diagonal part $D_T$ and its strictly singular part $S_T$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا