Do you want to publish a course? Click here

Unveiling the nature of INTEGRAL objects through optical spectroscopy. VI. A multi-observatory identification campaign

112   0   0.0 ( 0 )
 Added by Nicola Masetti
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources.



rate research

Read More

Within the framework of our program (running since 2004) of identification of hard X-ray INTEGRAL sources through optical spectroscopy, we present the results concerning the nature of 33 high-energy objects. The data were acquired with the use of six telescopes of different sizes and from one on-line archive. The results indicate that the majority of these objects (23 out of 33) are active galactic nuclei (AGNs), whereas 10 are sources in the local Universe with eight of which in the Galaxy and two in the Small Magellanic Cloud (SMC). Among the identified AGNs, 13 are of Type 1 (i.e., with broad emission lines), eight are of Type 2 (with narrow emissions only), and two are X-ray bright, optically normal galaxies with no apparent nuclear activity in the optical. Six of these AGNs lie at high redshift (z > 0.5). Concerning local objects, we found that five of them are Galactic cataclysmic variables, three are high-mass X-ray binaries (two of which lying in the SMC), one is a low-mass X-ray binary, and one is classified as a flare star that is likely of RS CVn type. The main optical properties and inferred physical characteristics of these sources are presented and discussed.
Within the framework of our program of assessment of the nature of unidentified or poorly known INTEGRAL sources, we present here spectroscopy of optical objects, selected through positional cross-correlation with soft X-ray detections (afforded with satellites such as Swift, ROSAT, Chandra and/or XMM-Newton) as putative counterparts of hard X-ray sources detected with the IBIS instrument onboard INTEGRAL. Using 6 telescopes of various sizes and archival data from two on-line spectroscopic surveys we are able to identify, either for the first time or independent of other groups, the nature of 20 INTEGRAL hard X-ray sources. Our results indicate that: 11 of these objects are active galactic nuclei (AGNs) at redshifts between 0.014 and 0.978, 7 of which display broad emission lines, 2 show narrow emission lines only, and 2 have unremarkable or no emission lines (thus are likely Compton thick AGNs); 5 are cataclysmic variables (CVs), 4 of which are (possibly magnetic) dwarf novae and one is a symbiotic star; and 4 are Galactic X-ray binaries (3 with high-mass companions and one with a low-mass secondary). It is thus again found that the majority of these sources are AGNs or magnetic CVs, confirming our previous findings. When possible, the main physical parameters for these hard X-ray sources are also computed using the multiwavelength information available in the literature. These identifications support the importance of INTEGRAL in the study of the hard X-ray spectrum of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of unidentified hard X-ray sources.
We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with Swift-BAT and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star.
As nearby neighbors to the Milky Way, the Large and Small Magellanic Clouds (LMC and SMC) provide a unique opportunity to study star formation in the context of their galactic ecosystems. Thousands of young stellar objects (YSOs) have been characterized with large-scale Spitzer and Herschel surveys. In this paper, we present new near-IR spectroscopy of five high-mass YSOs in the LMC and one in the SMC. We detect multiple hydrogen recombination lines, as well as He I 2.058 $mu$m, H$_2$, [Fe II], and [S III] in these highly excited sources. We estimate the internal extinction of each source and find that it is highest for sources with the youngest evolutionary classifications. Using line ratios, we assess the dominant excitation mechanism in the three sources where we detect both H$_2$ 2.12 $mu$m and [Fe II] 1.64 $mu$m. In each case, photoexcitation dominates over shock excitation. Finally, we detect CO bandhead absorption in one of our LMC sources. While this feature is often associated with evolved stars, this object is likely young with strong PAH and fine-structure emission lines tracing an H II region detected at longer wavelengths. Compared to high-mass YSOs in the Galaxy, our sources have higher bolometric and line luminosities, consistent with their selection as some of the brightest sources in the LMC and SMC.
We report the results of a multi-wavelength campaign on the blazar Mrk 421 during outburst. We observed four strong flares at X-ray energies that were not seen at other wavelengths (partially because of missing data). From the fastest rise in the X-rays, an upper limit could be derived on the extension of the emission region. A time lag between high-energy and low-energy X-rays was observed, which allowed an estimation of the magnetic-field strength. The spectral analysis of the X-rays revealed a slight spectral hardening of the low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity; i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20 - 150 keV), such correlations are less obvious. A multiwavelength spectrum was composed and the X-ray and bolometric luminosities are calculated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا