No Arabic abstract
Recently, de Visser and Blaauboer [Phys. Rev. Lett. {bf 96}, 246801 (2006)] proposed the most efficient deterministic teleportation protocol $cal T$ for electron spins in a semiconductor nanostructure consisting of a single and a double quantum dot. However, it is as yet unknown if $cal T$ can be completed before decoherence sets in. In this paper we analyze the detrimental effect of nuclear spin baths, the main source of decoherence, on $cal T$. We show that nonclassical teleportation fidelity can be achieved with $cal T$ provided certain conditions are met. Our study indicates that realization of quantum computation with quantum dots is indeed promising.
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this paper is how to design and implement the most efficient - in terms of the required number of single and two-qubit operations - deterministic teleportation protocol for this system. Using a group-theoretical analysis we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (sqrt(swap)) operations. These can be implemented for spin qubits in quantum dots using electron spin resonance (for single-spin rotations) and exchange interaction (for sqrt(swap) operations).
We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, coupled by tunneling, with one excess electron. It is shown how to create maximally entangled states with this kind of qubits using an adiabatically increasing Coulomb repulsion between different pairs. This entangled states are exploited to perform teleportation again using an adiabatic coupling between them and the incoming unknown state. Finally, a sudden separation of Bobs qubit enables a time evolution of Alices state providing a modified version of standard Bell measurement. Substituting the four quantum dots entangled state with a chain of coupled DQDs, a quantum channel with high fidelity arises from this scheme allowing the transmission over long distances.
Quantum state transfer and teleportation, with qubits encoded in internal states of the atoms in cavities, among spatially separated nodes of a quantum network in decoherence-free subspace are proposed, based on a cavity-assisted interaction by single-photon pulses. We show in details the implementation of a logic-qubit Hadamard gate and a two-logic-qubit conditional gate, and discuss the experimental feasibility of our scheme.
Quantum teleportation is a key ingredient of quantum networks and a building block for quantum computation. Teleportation between distant material objects using light as the quantum information carrier has been a particularly exciting goal. Here we demonstrate a new element of the quantum teleportation landscape, the deterministic continuous variable (cv) teleportation between distant material objects. The objects are macroscopic atomic ensembles at room temperature. Entanglement required for teleportation is distributed by light propagating from one ensemble to the other. Quantum states encoded in a collective spin state of one ensemble are teleported onto another ensemble using this entanglement and homodyne measurements on light. By implementing process tomography, we demonstrate that the experimental fidelity of the quantum teleportation is higher than that achievable by any classical process. Furthermore, we demonstrate the benefits of deterministic teleportation by teleporting a dynamically changing sequence of spin states from one distant object onto another.
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.