Do you want to publish a course? Click here

Silicates in Ultra-Luminous Infrared Galaxies

214   0   0.0 ( 0 )
 Added by N. A. Levenson
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescopes Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18um requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sightlines require dust that has a relatively high 18/10um absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. (1992) is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.



rate research

Read More

Silicates are an important component of interstellar dust and the structure of these grains -- amorphous versus crystalline -- is sensitive to the local physical conditions. We have studied the infrared spectra of a sample of ultra-luminous infrared galaxies. Here, we report the discovery of weak, narrow absorption features at 11, 16, 19, 23, and 28 microns, characteristic of crystalline silicates, superimposed on the broad absorption bands at 10 and 18 microns due to amorphous silicates in a subset of this sample. These features betray the presence of forsterite (Mg_2SiO_4), the magnesium-rich end member of the olivines. Previously, crystalline silicates have only been observed in circumstellar environments. The derived fraction of forsterite to amorphous silicates is typically 0.1 in these ULIRGs. This is much larger than the upper limit for this ratio in the interstellar medium of the Milky Way, 0.01. These results suggest that the timescale for injection of crystalline silicates into the ISM is short in a merger-driven starburst environment (e.g., as compared to the total time to dissipate the gas), pointing towards massive stars as a prominent source of crystalline silicates. Furthermore, amorphization due to cosmic rays, which is thought to be of prime importance for the local ISM, lags in vigorous starburst environments.
116 - S. Juneau 2009
We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10^{10} < L_{IR} < 10^{12.5} L_sun). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGN) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGN. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of ten molecular line ratios by combining the following transitions: CO(1-0), HCO+(1-0), HCO+(3-2), HCN(1-0), and HCN(3-2). Our results suggest that AGNs reside in systems with higher dense gas fraction, and that chemistry or other effects associated with their hard radiation field may not dominate (NGC 1068 is one exception). Galaxy merger could be the underlying cause of increased dense gas fraction and the evolutionary stage of such mergers may be another determinant of the HCN/CO luminosity ratio.
262 - A. Omont , Chentao Yang , P. Cox 2013
Using IRAM PdBI we report the detection of H2O in six new lensed ultra-luminous starburst galaxies at high redshift, discovered in the Herschel H-ATLAS survey. The sources are detected either in the 2_{02}-1_{11} or 2_{11}-2_{02} H_2O emission lines with integrated line fluxes ranging from 1.8 to 14 Jy.km/s. The corresponding apparent luminosities are mu x L_H2O ~ 3-12 x 10^8 Lo, where mu is the lensing magnification factor (3 < mu < 12). These results confirm that H2O lines are among the strongest molecular lines in such galaxies, with intensities almost comparable to those of the high-J CO lines, and same profiles and line widths (200-900 km/s) as the latter. With the current sensitivity of PdBI, H2O can therefore easily be detected in high-z lensed galaxies (with F(500um) > 100 mJy) discovered in the Herschel surveys. Correcting the luminosities for lensing amplification, L_H2O is found to have a strong dependence on the IR luminosity, varying as ~L_IR^{1.2}. This relation which needs to be confirmed with better statistics, may indicate a role of radiative (IR) excitation of the H2O lines, and implies that high-z galaxies with L_IR >~ 10^13 Lo tend to be very strong emitters in H2O, that have no equivalent in the local universe.
Ultra-luminous infrared galaxies (ULIRGs) are the most luminous and intense starburst galaxies in the Universe. Both their star-formation rate (SFR) and gas surface mass density are very high, implying a high supernovae rate and an efficient energy conversion of energetic protons. A small fraction of these supernovae is the so-called hypernovae with a typical kinetic energy ~1e52 erg and a shock velocity >=1e9 cm/s. The strong shocks driven by hypernovae are able to accelerate cosmic ray protons up to 1e17 eV. These energetic protons lose a good fraction of their energy through proton-proton collision when ejected into very dense interstellar medium, and as a result, produce high energy neutrinos (<=5 PeV). Recent deep infrared surveys provide solid constraints on the number density of ULIRGs across a wide redshift range 0<z<2.3, allowing us to derive the flux of diffuse neutrinos from hypernovae. We find that at PeV energies, the diffuse neutrinos contributed by ULIRGs are comparable with the atmosphere neutrinos with the flux of 2e-9GeV cm^-2/s/sr, by assuming the injected cosmic ray power law spectrum with an index of -2.
We present preliminary results of XMM-Newton observations of 5 Ultra-luminous Infrared Galaxies (ULIRGs), part of a mini-survey program dedicated to 10 ULIRGs selected from the bright IRAS sample. For 3 of them (IRAS 20551-4250, IRAS 19254-7245 and Mkn 231) we find strong evidence for the presence of a hidden AGN, while for two others (IRAS 20110-4156 IRAS 22491-1808) the S/N ratio of the data does not allow us to be conclusive. In particular, we have detected a strong Fe-K line in the X-ray spectra of IRAS19254-7245, with an equivalent width (~2 keV) suggestive that most of the energy source in this object is due to a deeply buried AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا