Do you want to publish a course? Click here

Kinematics of massive stars in the Small Magellanic Cloud

218   0   0.0 ( 0 )
 Added by Christopher Evans
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present radial velocities for 2045 stars in the Small Magellanic Cloud (SMC), obtained from the 2dF survey by Evans et al. (2004). The great majority of these stars are of OBA type, tracing the dynamics of the young stellar population. Dividing the sample into ad hoc `bar and `wing samples (north and south, respectively, of the line: $delta$ = -77$^{circ}$50 + [4$alpha$], where $alpha$ is in minutes of time) we find that the velocities in the SMC bar show a gradient of 26.3 +/- 1.6 km/s/deg. at a position angle of 126 +/- 4 deg. The derived gradient in the bar is robust to the adopted line of demarcation between the two samples. The largest redshifts are found in the SMC wing, in which the velocity distribution appears distinct from that in the bar, most likely a consequence of the interaction between the Magellanic Clouds that is predicted to have occurred 0.2 Gyr ago. The mean velocity for all stars in the sample is +172.0 +/- 0.2 km/s (redshifted by ~20 km/s when compared to published results for older populations), with a velocity dispersion of 30 km/s.



rate research

Read More

Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5 +/- 5.0 km/s. This unambiguously demonstrates that these two regions are kinematically distinct: the Wing is moving away from the Bar, and towards the Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is consistent with models for a recent, direct collision between the Clouds. We present transverse velocity distributions for our field OB stars, confirming that unbound runaways comprise on the order of half our sample, possibly more. Using eclipsing binaries and double-lined spectroscopic binaries as tracers of dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers of runaways accelerated by supernova kicks, we find significant contributions from both populations. The data suggest that HMXBs have lower velocity dispersion relative to dynamically ejected binaries, consistent with the former corresponding to less energetic supernova kicks that failed to unbind the components. Evidence suggests that our fast runaways are dominated by dynamical, rather than supernova, ejections.
We investigate the kinematics of neutral gas in the Small Magellanic Cloud (SMC) and test the hypothesis that it is rotating in a disk. To trace the 3D motions of the neutral gas distribution, we identify a sample of young, massive stars embedded within it. These are stars with radial velocity measurements from spectroscopic surveys and proper motion measurements from Gaia, whose radial velocities match with dominant HI components. We compare the observed radial and tangential velocities of these stars with predictions from the state-of-the-art rotating disk model based on high-resolution 21 cm observations of the SMC from the Australian Square Kilometer Array Pathfinder telescope. We find that the observed kinematics of gas-tracing stars are inconsistent with disk rotation. We conclude that the kinematics of gas in the SMC are more complex than can be inferred from the integrated radial velocity field. As a result of violent tidal interactions with the LMC, non-rotational motions are prevalent throughout the SMC, and it is likely composed of distinct sub-structures overlapping along the line of sight.
We study the evolutionary and physical properties of evolved O stars in the Small Magellanic Cloud (SMC), with a special focus on their surface abundances to investigate the efficiency of rotational mixing as a function of age, rotation and global metallicity. We analyse the UV + optical spectra of thirteen SMC O-type giants and supergiants, using the stellar atmosphere code CMFGEN to derive photospheric and wind properties. We compare the inferred properties to theoretical predictions from evolution models. For a more comprehensive analysis, we interpret the results together with those we obtained for O-type dwarfs in a former study. Most dwarfs lie in the early phases of the main-sequence. For a given initial mass, giants are farther along the evolutionary tracks, confirming that they are more evolved than dwarfs. Supergiants have higher initial masses and are located past the terminal age main-sequence. We find no clear trend of a mass discrepancy, regardless of the diagram that was used to estimate the evolutionary mass. CNO abundances are consistent with nucleosynthesis from the CNO cycle. Comparisons to theoretical predictions reveal that the initial mixture is important when the observed trends in the N/C versus N/O diagram are to be reproduced. A trend for stronger chemical evolution for more evolved objects is observed. More massive stars, are on average, more chemically enriched at a given evolutionary phase, qualitatively consistent with evolutionary models. Abundance ratios supports the theoretical prediction that massive stars at low metallicity are more chemically processed than their Galactic counterparts. Finally, models including rotation generally reproduce the surface abundances and rotation rates when different initial rotational velocities are considered. Nevertheless, there are objects for which a stronger braking and/or more efficient mixing is required.
High spatial resolution imaging with the Hubble Space Telescope allowed us to resolve the compact HII, region N81 lying in the Small Magellanic Cloud (SMC). We show the presence of a tight cluster of newborn massive stars embedded in this nebular ``blob of about 10 arcsecs, across. This is the first time the stellar content and internal morphology of such an object is uncovered. These are among the youngest massive stars in this galaxy accessible to direct observations at ultraviolet and optical wavelengths. Six of them are grouped in the core region of about 2 arcsecs diameter, with a pair of the main exciting stars in the very center separated by only 0.27 arcsecs or 0.08 pc. The images display violent phenomena such as stellar winds, shocks, ionization fronts, typical of turbulent starburst regions. Since the SMC is the most metal-poor galaxy observable with very high angular resolution, these observations provide important templates for studying star formation in the very distant metal-poor galaxies which populate the early Universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا