Do you want to publish a course? Click here

Topologically Trivial Legendrian Knots

175   0   0.0 ( 0 )
 Added by Maia Fraser
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The paper deals with topologically trivial Legendrian knots in tight and overtwisted contact 3-manifolds. The first part contains a thorough exposition of the proof of the classification of topologically trivial Legendrian knots (i.e. Legendrian knots bounding embedded 2-disks) in tight contact 3-manifolds. This part was essentially written more than 10 years ago, but only a short version, without the detailed proofs, was published (in CRM Proc. Lecture Notes, Vol. 15, 1998). That paper also briefly discussed the overtwisted case. The final part of the present paper contains a more systematic discussion of Legendrian knots in overtwisted contact manifolds, and in particular, gives the coarse classification (i.e. classification up to a global contactomorphism) of topologically trivial Legendrian knots in overtwisted contact S^3.



rate research

Read More

138 - Marco Golla 2014
We prove the equivalence of the invariants EH(L) and LOSS-(L) for oriented Legendrian knots L in the 3-sphere equipped with the standard contact structure, partially extending a previous result by Stipsicz and Vertesi. In the course of the proof we relate the sutured Floer homology groups associated with a knot complement and knot Floer homology, and define intermediate Legendrian invariants.
In this article, we introduce rack invariants of oriented Legendrian knots in the 3-dimensional Euclidean space endowed with the standard contact structure, which we call Legendrian racks. These invariants form a generalization of the quandle invariants of knots. These rack invariants do not result in a complete invariant, but detect some of the geometric properties such as cusps in a Legendrian knot. In the case of topologically trivial Legendrian knots, we test this family of invariants for its strengths and limitations. We further prove that these invariants form a natural generalization of the quandle invariant, by which we mean that any rack invariant under certain restrictions is equivalent to a Legendrian rack. The axioms of these racks are expressible in first order logic, and were discovered through a series of experiments using an automated theorem prover for first order logic. We also present the results from the experiments on Legendrian unknots involving auto-mated theorem provers, and describe how they led to our current formulation.
205 - Youlin Li , Jiajun Wang 2011
In this paper, the support genus of all Legendrian right handed trefoil knots and some other Legendrian knots is computed. We give examples of Legendrian knots in the three-sphere with the standard contact structure which have positive support genus with arbitrarily negative Thurston-Benniquin invariant. This answers a question in Onaran.
162 - Feifei Chen , Fan Ding , Youlin Li 2013
We classify the Legendrian torus knots in S^1times S^2 with its standard tight contact structure up to Legendrian isotopy.
145 - Youlin Li , Motoo Tange 2019
In this paper, we construct the first families of distinct Lagrangian ribbon disks in the standard symplectic 4-ball which have the same boundary Legendrian knots, and are not smoothly isotopic or have non-homeomorphic exteriors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا