We give a family of counter examples showing that the two sequences of polytopes $Phi_{n,n}$ and $Psi_{n,n}$ are different. These polytopes were defined recently by S. Friedland in an attempt at a polynomial time algorithm for graph isomorphism.
We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Grobner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Grobner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus.
We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.
A fundamental problem in quantum computation and quantum information is finding the minimum quantum dimension needed for a task. For tasks involving state preparation and measurements, this problem can be addressed using only the input-output correlations. This has been applied to Bell, prepare-and-measure, and Kochen-Specker contextuality scenarios. Here, we introduce a novel approach to quantum dimension witnessing for scenarios with one preparation and several measurements, which uses the graphs of mutual exclusivity between sets of measurement events. We present the concepts and tools needed for graph-theoretic quantum dimension witnessing and illustrate their use by identifying novel quantum dimension witnesses, including a family that can certify arbitrarily high quantum dimensions with few events.
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-arc model, our algorithm constructs it canonically, which means that the models constructed for isomorphic graphs are equal.
In recent years, we have seen several approaches to the graph isomorphism problem based on generic mathematical programming or algebraic (Grobner basis) techniques. For most of these, lower bounds have been established. In fact, it has been shown that the pairs of nonisomorphic CFI-graphs (introduced by Cai, Furer, and Immerman in 1992 as hard examples for the combinatorial Weisfeiler-Leman algorithm) cannot be distinguished by these mathematical algorithms. A notable exception were the algebraic algorithms over the field GF(2), for which no lower bound was known. Another, in some way even stronger, approach to graph isomorphism testing is based on solving systems of linear Diophantine equations (that is, linear equations over the integers), which is known to be possible in polynomial time. So far, no lower bounds for this approach were known. Lower bounds for the algebraic algorithms can best be proved in the framework of proof complexity, where they can be phrased as lower bounds for algebraic proof systems such as Nullstellensatz or the (more powerful) polynomial calculus. We give new hard examples for these systems: families of pairs of non-isomorphic graphs that are hard to distinguish by polynomial calculus proofs simultaneously over all prime fields, including GF(2), as well as examples that are hard to distinguish by the systems-of-linear-Diophantine-equations approach. In a previous paper, we observed that the CFI-graphs are closely related to what we call group CSPs: constraint satisfaction problems where the constraints are membership tests in some coset of a subgroup of a cartesian power of a base group (Z_2 in the case of the classical CFI-graphs). Our new examples are also based on group CSPs (for Abelian groups), but here we extend the CSPs by a few non-group constraints to obtain even harder instances for graph isomorphism.