No Arabic abstract
We present the first spin alignment measurements for the $K^{*0}(892)$ and $phi(1020)$ vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at $sqrt{s_{NN}}$ = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are $rho_{00}$ = 0.32 $pm$ 0.04 (stat) $pm$ 0.09 (syst) for the $K^{*0}$ ($0.8<p_T<5.0$ GeV/c) and $rho_{00}$ = 0.34 $pm$ 0.02 (stat) $pm$ 0.03 (syst) for the $phi$ ($0.4<p_T<5.0$ GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for $K^{*0}$ and $phi$ in Au+Au collisions were also measured with respect to the particles production plane. The $phi$ result, $rho_{00}$ = 0.41 $pm$ 0.02 (stat) $pm$ 0.04 (syst), is consistent with that in p+p collisions, $rho_{00}$ = 0.39 $pm$ 0.03 (stat) $pm$ 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
We present new measurements related to spin alignment of $mathrm{K^{*0}}$ vector mesons at mid-rapidity for Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production plane and second order event plane. At low $p_{mathrm{T}}$ the spin density matrix element $rho_{00}$ for $mathrm{K^{*0}}$ is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high $p_{mathrm{T}}$. Similar values of $rho_{00}$ are observed w.r.t. both production plane and event plane. Within statistical and systematic uncertainties, $rho_{00}$ values are also found to be independent of $sqrt{s_{mathrm{NN}}}$. $rho_{00}$ also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions w.r.t. both the kinematic planes. The measurements for $mathrm{K^{*0}}$ in pp collisions at $sqrt{s}$ = 13 TeV and for $mathrm{K^{0}_{S}}$ (a spin 0 hadron) in 20-40% central Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 TeV are consistent with no spin alignment.
An angular analysis of the decay $B^0 to phi K^*(892)^0$ is reported based on a $pp$ collision data sample, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected at a centre-of-mass energy of $sqrt{s} = 7$ TeV with the LHCb detector. The P-wave amplitudes and phases are measured with a greater precision than by previous experiments, and confirm about equal amounts of longitudinal and transverse polarization. The S-wave $K^+ pi^-$ and $K^+K^-$ contributions are taken into account and found to be significant. A comparison of the $B^0 to phi K^*(892)^0$ and $bar{B}^0 to phi bar{K}^*(892)^0$ results shows no evidence for direct CP violation in the rate asymmetry, in the triple-product asymmetries or in the polarization amplitudes and phases.
The cross sections of the processes $e^+e^- to K^+K^-$, $e^+e^- to K_SK_L$ and $e^+e^- to pi^+pi^-pi^0$ were measured in the SND experiment at the VEPP-2M collider in the energy region near the $phi(1020)$ meson. These measurements were based on about $10^6$ $K^+K^-$, $0.5 times 10^6$ $K_SK_L$ and $0.4 times 10^6$ $pi^+pi^-pi^0$ selected events. Themeasured cross sections have been analyzed in the framework of the vector meson dominance model and the main parameters of the $phi$-resonance were obtained, such as its mass, width, the production cross section and branching ratios of the main decay modes. The measured value of the $phi$ meson total width, $Gamma_{phi} = 4.21 pm 0.04$ is lower than the present world average of $4.458 pm 0.032$ MeV. Contributions in addition to the conventional vector meson dominance model were found in the $e^+e^- to pi^+pi^-pi^0$ reaction cross section.
The STAR Collaboration reports on the photoproduction of $pi^+pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $pi^+pi^-$ invariant mass spectrum with a combination of $rho$ and $omega$ resonances and a direct $pi^+pi^-$ continuum. This is the first observation of the $omega$ in ultra-peripheral collisions, and the first measurement of $rho-omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $omega$ amplitude is consistent with the measured $gamma prightarrow omega p$ cross section, a classical Glauber calculation and the $omegarightarrowpi^+pi^-$ branching ratio. The $omega$ phase angle is similar to that observed at much lower energies, showing that the $rho-omega$ phase difference does not depend significantly on photon energy. The $rho^0$ differential cross section $dsigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
Production of the $K^{ast}(892)^0$ and $bar{K}^{ast}(892)^0$ resonances was studied via their $K^+ pi^-$ and $K^- pi^+$ decay modes in central Pb+Pb, Si+Si, C+C and inelastic p+p collisions at 158agev ($sqrt{s_{NN}}$ = 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum and rapidity distributions were measured and total yields were estimated. The yield of $K^{ast}$ exceeds that of $bar{K}^{ast}$ by about a factor of two in nucleus-nucleus reactions. The total yield ratios $< K^{ast} >/< K^+ >$ and $< bar{K}^{ast} >/< K^->$ are strongly suppressed in central Pb+Pb compared to p+p, C+C and Si+Si collisions in agreement with the expected attenuation of these short-lived resonance states in the hadronic phase of the expanding fireball. The UrQMD model, although incorporating such a scenario, does not provide a quantitative description of the experimental results. The statistical hadron gas model assuming the same freeze-out parameters for stable hadrons and resonances overestimates the $< K^{ast} >/< K >$ ratios in central Pb+Pb collisions by about a factor of 2.5.