Geometric information in eight dimensions vs. quantum information


Abstract in English

Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra for 3D Euclidean space as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations -- reflections and rotations -- in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.

Download