Do you want to publish a course? Click here

Paires de structures de contact sur les varietes de dimension trois

145   0   0.0 ( 0 )
 Added by Vincent Colin
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a notion of positive pair of contact structures on a 3-manifold which generalizes a previous definition of Eliashberg-Thurston and Mitsumatsu. Such a pair gives rise to a locally integrable plane field $lambda$. We prove that if $lambda$ is uniquely integrable and if both structures of the pair are tight, then the integral foliation of $lambda$ doesnt contain any Reeb component whose core curve is homologous to zero. Moreover, the ambient manifold carries a Reebless foliation. We also show a stability theorem `a la Reeb for positive pairs of tight contact structures.



rate research

Read More

220 - Vincent Colin , Ko Honda 2008
Let V be a closed 3-manifold. In this paper we prove that the homotopy classes of plane fields on V that contain tight contact structures are in finite number and that, if V is atoroidal, the isotopy classes of tight contact structures are also in finite number.
212 - Daniel Barlet 2007
In this article we show that all results proved for a large class of holomorphic germs $f : (mathbb{C}^{n+1}, 0) to (mathbb{C}, 0)$ with a 1-dimension singularity in [B.II] are valid for an arbitrary such germ.
257 - Fabien Pazuki 2015
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive as corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.
243 - Pascal Boyer 2013
We define and study new filtrations called of stratification of a perverse sheaf on a scheme; beside the cases of the weight or monodromy filtrations, these filtrations are available whatever are the ring of coefficients. We illustrate these constructions in the geometric situation of the simple unitary Shimura varieties of Harris and Taylors book for the perverse sheaves of Harris-Taylor and the complex of vanishing cycles, introduced and studied in my 2009 paper at inventiones. In the situation studied in loc. cit., we show how to use these filtrations to simplify the principal step of this paper; the cases of finite field or ring of integer of a local field will be studied in the next published paper.
Let X be a complex analytic manifold and D subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {cal D}_X(log D). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings {cal D}_X and {cal D}_X(log D), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا