No Arabic abstract
In this paper we consider higher isoperimetric numbers of a (finite directed) graph. In this regard we focus on the $n$th mean isoperimetric constant of a directed graph as the minimum of the mean outgoing normalized flows from a given set of $n$ disjoint subsets of the vertex set of the graph. We show that the second mean isoperimetric constant in this general setting, coincides with (the mean version of) the classical Cheeger constant of the graph, while for the rest of the spectrum we show that there is a fundamental difference between the $n$th isoperimetric constant and the number obtained by taking the minimum over all $n$-partitions. In this direction, we show that our definition is the correct one in the sense that it satisfies a Federer-Fleming-type theorem, and we also define and present examples for the concept of a supergeometric graph as a graph whose mean isoperimetric constants are attained on partitions at all levels. Moreover, considering the ${bf NP}$-completeness of the isoperimetric problem on graphs, we address ourselves to the approximation problem where we prove general spectral inequalities that give rise to a general Cheeger-type inequality as well. On the other hand, we also consider some algorithmic aspects of the problem where we show connections to orthogonal representations of graphs and following J.~Malik and J.~Shi ($2000$) we study the close relationships to the well-known $k$-means algorithm and normalized cuts method.
For a simple, undirected and connected graph $G$, $D_{alpha}(G) = alpha Tr(G) + (1-alpha) D(G)$ is called the $alpha$-distance matrix of $G$, where $alphain [0,1]$, $D(G)$ is the distance matrix of $G$, and $Tr(G)$ is the vertex transmission diagonal matrix of $G$. Recently, the $alpha$-distance energy of $G$ was defined based on the spectra of $D_{alpha}(G)$. In this paper, we define the $alpha$-distance Estrada index of $G$ in terms of the eigenvalues of $D_{alpha}(G)$. And we give some bounds on the spectral radius of $D_{alpha}(G)$, $alpha$-distance energy and $alpha$-distance Estrada index of $G$.
In this paper, based on the contributions of Tucker (1983) and Seb{H{o}} (1992), we generalize the concept of a sequential coloring of a graph to a framework in which the algorithm may use a coloring rule-base obtained from suitable forcing structures. In this regard, we introduce the {it weak} and {it strong sequential defining numbers} for such colorings and as the main results, after proving some basic properties, we show that these two parameters are intrinsically different and their spectra are nontrivial. Also, we consider the natural problems related to the complexity of computing such parameters and we show that in a variety of cases these problems are ${bf NP}$-complete. We conjecture that this result does not depend on the rule-base for all nontrivial cases.
We study the spectrum of the normalized Laplace operator of a connected graph $Gamma$. As is well known, the smallest nontrivial eigenvalue measures how difficult it is to decompose $Gamma$ into two large pieces, whereas the largest eigenvalue controls how close $Gamma$ is to being bipartite. The smallest eigenvalue can be controlled by the Cheeger constant, and we establish a dual construction that controls the largest eigenvalue. Moreover, we find that the neighborhood graphs $Gamma[l]$ of order $lgeq2$ encode important spectral information about $Gamma$ itself which we systematically explore. In particular, the neighborhood graph method leads to new estimates for the smallest nontrivial eigenvalue that can improve the Cheeger inequality, as well as an explicit estimate for the largest eigenvalue from above and below. As applications of such spectral estimates, we provide a criterion for the synchronizability of coupled map lattices, and an estimate for the convergence rate of random walks on graphs.
Let $G$ be a simple, connected graph, $mathcal{D}(G)$ be the distance matrix of $G$, and $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$. The distance Laplacian matrix and distance signless Laplacian matrix of $G$ are defined by $mathcal{L}(G) = Tr(G)-mathcal{D}(G)$ and $mathcal{Q}(G) = Tr(G)+mathcal{D}(G)$, respectively. The eigenvalues of $mathcal{D}(G)$, $mathcal{L}(G)$ and $mathcal{Q}(G)$ is called the $mathcal{D}-$spectrum, $mathcal{L}-$spectrum and $mathcal{Q}-$spectrum, respectively. The generalized distance matrix of $G$ is defined as $mathcal{D}_{alpha}(G)=alpha Tr(G)+(1-alpha)mathcal{D}(G),~0leqalphaleq1$, and the generalized distance spectral radius of $G$ is the largest eigenvalue of $mathcal{D}_{alpha}(G)$. In this paper, we give a complete description of the $mathcal{D}-$spectrum, $mathcal{L}-$spectrum and $mathcal{Q}-$spectrum of some graphs obtained by operations. In addition, we present some new upper and lower bounds on the generalized distance spectral radius of $G$ and of its line graph $L(G)$, based on other graph-theoretic parameters, and characterize the extremal graphs. Finally, we study the generalized distance spectrum of some composite graphs.
This note resolves an open problem asked by Bezrukov in the open problem session of IWOCA 2014. It shows an equivalence between regular graphs and graphs for which a sequence of invariants presents some symmetric property. We extend this result to a few other sequences.