No Arabic abstract
Neutral fluorine lines are identified in the optical spectra of several R Coronae Borealis stars (RCBs) at maximum light. These lines provide the first measurement of the fluorine abundance in these stars. Fluorine is enriched in some RCBs by factors of 800 to 8000 relative to its likely initial abundance. The overabundances of fluorine are evidence for the synthesis of fluorine. These results are discussed in the light of the scenario that RCBs are formed by accretion of an He white dwarf by a C-O white dwarf. Sakurais object (V4334 Sgr), a final He-shell flash product, shows no detectable neutral fluorine lines.
Neutral fluorine (F I) lines are identified in the optical spectra of several R Coronae Borealis stars (RCBs) at maximum light. These lines provide the first measurement of the fluorine abundance in these stars. Fluorine is enriched in some RCBs by factors of 800 to 8000 relative to its likely initial abundance. The overabundances of fluorine are evidence for the synthesis of fluorine. These results are discussed in the light of the scenario that RCBs are formed by accretion of an He white dwarf by a C-O white dwarf. Sakurais object (V4334 Sgr), a final He-shell flash product, shows no detectable F I lines.
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in the last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
The R Coronae Borealis (RCB) stars are rare hydrogen--deficient, carbon--rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars result from the mergers of CO/He white dwarf (WD) binaries. We constructed post--merger spherically asymmetric models computed with the MESA code, and then followed the evolution into the region of the HR diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He--burning shell. Our MESA modeling consists of engineering the star by adding He--WD material to an initial CO--WD model, and then following the post--merger evolution using a nuclear--reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within MESA. We follow the later evolution beyond the RCB phase to determine the stars likely lifetimes. The relative numbers of known RCB and Extreme Helium (EHe) stars correspond well to the lifetimes predicted from the MESA models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.
We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I 10830 lines of twelve R Coronae Borealis (RCB) stars over short (1 month) and long (3 year) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities ~400 km/s appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.
The main objective of this paper is to explore abundances of fluorine in hot Extreme Helium Stars (EHes). Overabundance of fluorine is a characteristic feature for cool EHes and R Coronae Borealis (RCB) stars and further enforces their close connection. For hot EHes this relationship with the cooler EHes, based on their fluorine abundance is unexplored. We present in this paper the first abundance estimates of fluorine determined from singly ionised fluorine lines (F,{sc ii}) for 10 hot EHe stars from optical spectra. Fluorine abundances were determined using the F,{sc ii} lines in two windows centered at 3505 AA and 3850 AA . Six of the 10 stars show significant enhancement of fluorine similar to the cool EHes. Two carbon-poor hot EHes show no signature of fluorine and have a significant low upper limit for the F abundance. These fluorine abundances are compared with the other elemental abundances observed in these stars which provide an idea about the formation and evolution of these stars. The trends of fluorine with C, O, and Ne show that significant helium burning after a CO-He white dwarf merger can account for a majority of the observed abundances. Predictions from simulations of white dwarf mergers are discussed in light of the observed abundances.