On the effect of weak disorder on the density of states in graphene


Abstract in English

The effect of weak potential and bond disorder on the density of states of graphene is studied. By comparing the self-consistent non-crossing approximation on the honeycomb lattice with perturbation theory on the Dirac fermions, we conclude, that the linear density of states of pure graphene changes to a non-universal power-law, whose exponent depends on the strength of disorder like 1-4g/sqrt{3}t^2pi, with g the variance of the Gaussian disorder, t the hopping integral. This can result in a significant suppression of the exponent of the density of states in the weak-disorder limit. We argue, that even a non-linear density of states can result in a conductivity being proportional to the number of charge carriers, in accordance with experimental findings.

Download