Do you want to publish a course? Click here

The Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States

185   0   0.0 ( 0 )
 Added by Lawrence M. Krauss
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe here how the late time behavior of the decaying states, which is predicted to deviate from an exponential form, while normally of insignificant consequence, may have important cosmological implications in the case of false vacuum decay. It may increase the likelihood of eternal inflation, and may help explain the likelihood of observing a small vacuum energy at late times, as well as arguing against decay into a large negative energy (anti-de Sitter space), vacuum state as has been motivated by some string theory considerations. Several interesting open questions are raised, including whether observing the cosmological configuration of a metastable universe can constrain its inferred lifetime.



rate research

Read More

The recent suggestion that late time quantum dynamics may be important for resolving cosmological issues associated with our observed universe requires a consideration of several subtle issues associated with quantum cosmology, as we describe here. The resolution of these issues will be important if we are to be able to properly ascribe probability measures associated with eternal inflation, and a string landscape.
102 - K. Urbanowski 2013
Recent LHC results concerning the mass of the Higgs boson indicate that the vacuum in our Universe may be unstable. We analyze properties of unstable vacuum states from the point of view of the quantum theory of unstable states. From the literature it is known that some of false vacuum states may survive up to times when their survival probability has a non-exponential form. At times much latter than the transition time, when contributions to the survival probability of its exponential and non-exponential parts are comparable, the survival probability as a function of time $t$ has an inverse power-like form. We show that at this time region the instantaneous energy of the false vacuum states tends to the energy of the true vacuum state as $1/t^{2}$ for $t to infty$. Properties of the instantaneous energy at transition times are also analyzed for a given model. It is shown that at this time region large and rapid fluctuations of the instantaneous energy take place. This suggests analogous behavior of the cosmological constant at these time regions.
We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral symmetry and pick out a specific point on the models target space as the unique true vacuum. However, they also allow the possibility of false vacua, local minima of the potential energy. These false vacuum configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due to quantum tunnelling, consequently causing the decay of the false vacuum. We compute the rate of decay of the false vacuum due to the existence of false skyrmions.
The decay rate of a false vacuum is studied in gauge theory, paying particular attention to its gauge invariance. Although the decay rate should not depend on the gauge parameter $xi$ according to the Nielsen identity, the gauge invariance of the result of a perturbative calculation has not been clearly shown. We give a prescription to perform a one-loop calculation of the decay rate, with which a manifestly gauge-invariant expression of the decay rate is obtained. We also discuss the renormalization necessary to make the result finite, and show that the decay rate is independent of the gauge parameter even after the renormalization.
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elementary particles. Due to the astronomical time scales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using iTEBD simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا