Do you want to publish a course? Click here

Conditions for magnetically induced singlet d-wave superconductivity on the square lattice

124   0   0.0 ( 0 )
 Added by Syed Raghib Hassan
 Publication date 2007
  fields Physics
and research's language is English
 Authors S. R. Hassan




Ask ChatGPT about the research

It is expected that at weak to intermediate coupling, d-wave superconductivity can be induced by antiferromagnetic fluctuations. However, one needs to clarify the role of Fermi surface topology, density of states, pseudogap, and wave vector of the magnetic fluctuations on the nature and strength of the induced d-wave state. To this end, we study the generalized phase diagram of the two-dimensional half-filled Hubbard model as a function of interaction strength $U/t$, frustration induced by second-order hopping $t^{prime}/t$, and temperature $T/t$. In experiment, $U/t$ and $t^{prime}/t$ can be controlled by pressure. We use the two-particle self-consistent approach (TPSC), valid from weak to intermediate coupling. We first calculate as a function of $t^{prime}/t$ and $U/t$ the temperature and wave vector at which the spin response function begins to grow exponentially.D-wave superconductivity in a half-filled band can be induced by such magnetic fluctuations at weak to intermediate coupling, but only if they are near commensurate wave vectors and not too close to perfect nesting conditions where the pseudogap becomes detrimental to superconductivity. For given $U/t$ there is thus an optimal value of frustration $t^{prime}/t$ where the superconducting $T_c$ is maximum. The non-interacting density of states plays little role. The symmetry d$_{x^{2}-y^{2}}$ vs d$_{xy}$ of the superconducting order parameter depends on the wave vector of the underlying magnetic fluctuations in a way that can be understood qualitatively from simple arguments.



rate research

Read More

Unravelling competing orders emergent in doped Mott insulators and their interplay with unconventional superconductivity is one of the major challenges in condensed matter physics. To explore possible superconductivity state in the doped Mott insulator, we study a square-lattice $t$-$J$ model with both the nearest and next-nearest-neighbor electron hoppings and spin Heisenberg interactions. By using the state-of-the-art density matrix renormalization group simulations with imposing charge $U(1)$ and spin $SU(2)$ symmetries on the large-scale six-leg cylinders, we establish a quantum phase diagram including three phases: a stripe charge density wave phase, a superconducting phase without static charge order, and a superconducting phase coexistent with a weak charge stripe order. Crucially, we demonstrate that the superconducting phase has a power-law pairing correlation decaying much slower than the charge density and spin correlations, which is a quasi-1D descendant of the uniform d-wave superconductor in two dimensions. These findings reveal that enhanced charge and spin fluctuations with optimal doping is able to produce robust d-wave superconductivity in doped Mott insulators, providing a foundation for connecting theories of superconductivity to models of strongly correlated systems.
We study the Coulomb-Frohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Frohlich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard $U$. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.
We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square lattice. In particular, we present results spanning the whole range of phonon frequencies, allowing us to use the well understood adiabatic and antiadiabatic limits as reference points. For all parameters considered, our data suggest that CDW correlations are stronger than pairing correlations even at very low temperatures. These findings are compatible with a CDW ground state that is also suggested by theoretical arguments.
We report the discovery of pressure-induced superconductivity in a semimetallic magnetic material CeTe$_{1.82}$. The superconducting transition temperature $T_{SC}$ = 2.7 K (well below the magnetic ordering temperatures) under pressure ($>$ 2 kbar) is remarkably high, considering the relatively low carrier density due to a charge-density-wave transition associated with lattice modulation. The coexisting magnetic structure of a mixed ferromagnetism and antiferromagnetism can provide a clue for this high $T_{SC}$. We discuss a theoretical model for its possible pairing symmetry and pairing mechanism.
136 - Z.Y. Weng , Y. Zhou , 2003
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be constructed from this wave function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا