Do you want to publish a course? Click here

Dynamics of Vortex Formation in Merging Bose-Einstein Condensate Fragments

131   0   0.0 ( 0 )
 Added by Ricardo Carretero
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the formation of vortices in a Bose-Einstein condensate (BEC) that has been prepared by allowing isolated and independent condensed fragments to merge together. We focus on the experimental setup of Scherer {it et al.} [Phys. Rev. Lett. {bf 98}, 110402 (2007)], where three BECs are created in a magnetic trap that is segmented into three regions by a repulsive optical potential; the BECs merge together as the optical potential is removed. First, we study the two-dimensional case, in particular we examine the effects of the relative phases of the different fragments and the removal rate of the optical potential on the vortex formation. We find that many vortices are created by instant removal of the optical potential regardless of relative phases, and that fewer vortices are created if the intensity of the optical potential is gradually ramped down and the condensed fragments gradually merge. In all cases, self-annihilation of vortices of opposite charge is observed. We also find that for sufficiently long barrier ramp times, the initial relative phases between the fragments leave a clear imprint on the resulting topological configuration. Finally, we study the three-dimensional system and the formation of vortex lines and vortex rings due to the merger of the BEC fragments; our results illustrate how the relevant vorticity is manifested for appropriate phase differences, as well as how it may be masked by the planar projections observed experimentally.



rate research

Read More

We report on the observation of vortex formation in a Bose-Einstein condensate of Rb-87 atoms. Vortices are generated by superimposing an oscillating excitation to the trapping potential introduced by an external magnetic field. For small amplitudes of the external excitation field we observe a bending of the cloud axis. Increasing the amplitude we observe formation of a growing number of vortices in the sample. Shot-to-shot variations in both vortex number and position within the condensed cloud are observed, probably due to the intrinsic vortex nucleation dynamics. We discuss the possible formation of vortices and anti-vortices in the sample as well as possible mechanisms for vortex nucleation.
249 - S. J. Woo , Young-Woo Son 2012
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induced vortex dipoles unlike the surface waves of a simply-connected one with vortex monopoles. Consequently, under stirring to drive an inner surface wave, a peculiar population oscillation between the inner and outer surface is generated regardless of annulus thickness. Moreover, a new vortex nucleation process by stirring is observed that can merge the inner vortex dipoles and outer vortex into a single vortex inside the annulus. The energy spectrum for a rotating annular condensate with a vortex at the center also reveals the distinct connection of the Tkachenko modes of a vortex lattice to its inner surface excitations.
147 - Ari M. Turner 2009
In contrast to charge vortices in a superfluid, spin vortices in a ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The mass of spin vortices depends on the spin-dependent interactions, and can be measured as a part of experiments on how spin vortices orbit one another. For Rb87 in a 1 micron thick trap m_v is about 10^-21 kg.
Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretical method used to interpret the measurement data as well as more details of the experiment and its analysis. The theory reported here is a tool for the investigation of different dynamical situations in time-dependent harmonic traps.
Doubly quantized vortices were topologically imprinted in $|F=1>$ $^{23}$Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dynamical instability. The time scale of the splitting process was found to be longer at higher atom density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا