Limit theorems for maximum flows on a lattice


Abstract in English

We independently assign a non-negative value, as a capacity for the quantity of flows per unit time, with a distribution F to each edge on the Z^d lattice. We consider the maximum flows through the edges of two disjoint sets, that is from a source to a sink, in a large cube. In this paper, we show that the ratio of the maximum flow and the size of source is asymptotic to a constant. This constant is denoted by the flow constant.

Download