X-Ray Binaries and the Current Dynamical States of Galactic Globular Clusters


Abstract in English

It has been known for over 30 years that Galactic globular clusters (GCs) are overabundant by orders of magnitude in bright X-ray sources per unit mass relative to the disk population. Recently a quantitative understanding of this phenomenon has developed, with a clear correlation between the number of X-ray sources in a cluster, $N_X$, and the clusters encounter frequency, $Gamma$, becoming apparent. We derive a refined version of $Gamma$ that incorporates the finite lifetime of X-ray sources and the dynamical evolution of clusters. With it we find we are able to explain the few clusters that lie off the $N_X$--$Gamma$ correlation, and resolve the discrepancy between observed GC core radii and the values predicted by theory. Our results suggest that most GCs are still in the process of core contraction and have not yet reached the thermal equilibrium phase driven by binary scattering interactions.

Download