Do you want to publish a course? Click here

Guessing the output of a stationary binary time series

139   0   0.0 ( 0 )
 Added by Gusztav Morvai
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

The forward prediction problem for a binary time series ${X_n}_{n=0}^{infty}$ is to estimate the probability that $X_{n+1}=1$ based on the observations $X_i$, $0le ile n$ without prior knowledge of the distribution of the process ${X_n}$. It is known that this is not possible if one estimates at all values of $n$. We present a simple procedure which will attempt to make such a prediction infinitely often at carefully selected stopping times chosen by the algorithm. The growth rate of the stopping times is also exhibited.



rate research

Read More

The forecasting problem for a stationary and ergodic binary time series ${X_n}_{n=0}^{infty}$ is to estimate the probability that $X_{n+1}=1$ based on the observations $X_i$, $0le ile n$ without prior knowledge of the distribution of the process ${X_n}$. It is known that this is not possible if one estimates at all values of $n$. We present a simple procedure which will attempt to make such a prediction infinitely often at carefully selected stopping times chosen by the algorithm. We show that the proposed procedure is consistent under certain conditions, and we estimate the growth rate of the stopping times.
134 - G. Morvai , B. Weiss 2007
Let ${X_n}_{n=0}^{infty}$ be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of $X_{n+1}$ based on the observations $X_i$, $0le ile n$ in a strongly consistent way. Bailey and Ryabko proved that this is not possible even for ergodic binary time series if one estimates at all values of $n$. We propose a very simple algorithm which will make prediction infinitely often at carefully selected stopping times chosen by our rule. We show that under certain conditions our procedure is strongly (pointwise) consistent, and $L_2$ consistent without any condition. An upper bound on the growth of the stopping times is also presented in this paper.
346 - G. Morvai , S. Yakowitz , 2007
The setting is a stationary, ergodic time series. The challenge is to construct a sequence of functions, each based on only finite segments of the past, which together provide a strongly consistent estimator for the conditional probability of the next observation, given the infinite past. Ornstein gave such a construction for the case that the values are from a finite set, and recently Algoet extended the scheme to time series with coordinates in a Polish space. The present study relates a different solution to the challenge. The algorithm is simple and its verification is fairly transparent. Some extensions to regression, pattern recognition, and on-line forecasting are mentioned.
The conditional distribution of the next outcome given the infinite past of a stationary process can be inferred from finite but growing segments of the past. Several schemes are known for constructing pointwise consistent estimates, but they all demand prohibitive amounts of input data. In this paper we consider real-valued time series and construct conditional distribution estimates that make much more efficient use of the input data. The estimates are consistent in a weak sense, and the question whether they are pointwise consistent is still open. For finite-alphabet processes one may rely on a universal data compression scheme like the Lempel-Ziv algorithm to construct conditional probability mass function estimates that are consistent in expected information divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infinite alphabet, but weak consistency can. Some applications of the estimates to on-line forecasting, regression and classification are discussed.
211 - G. Morvai , B. Weiss 2007
Let ${X_n}$ be a stationary and ergodic time series taking values from a finite or countably infinite set ${cal X}$. Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times $lambda_n$ along which we will be able to estimate the conditional probability $P(X_{lambda_n+1}=x|X_0,...,X_{lambda_n})$ from data segment $(X_0,...,X_{lambda_n})$ in a pointwise consistent way for a restricted class of stationary and ergodic finite or countably infinite alphabet time series which includes among others all stationary and ergodic finitarily Markovian processes. If the stationary and ergodic process turns out to be finitarily Markovian (among others, all stationary and ergodic Markov chains are included in this class) then $ lim_{nto infty} {nover lambda_n}>0$ almost surely. If the stationary and ergodic process turns out to possess finite entropy rate then $lambda_n$ is upperbounded by a polynomial, eventually almost surely.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا