Do you want to publish a course? Click here

Search for Dark Matter Annihilation in Draco with STACEE

220   0   0.0 ( 0 )
 Added by Donald Driscoll Jr.
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

For some time, the Draco dwarf spheroidal galaxy has garnered interest as a possible source for the indirect detection of dark matter. Its large mass-to-light ratio and relative proximity to the Earth provide favorable conditions for the production of detectable gamma rays from dark matter self-annihilation in its core. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an air-shower Cherenkov telescope located in Albuquerque, NM capable of detecting gamma rays at energies above 100 GeV. We present the results of the STACEE observations of Draco during the 2005-2006 observing season totaling 10 hours of livetime after cuts.



rate research

Read More

Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for very-high-energy (VHE, $Egeq 100$ GeV) gamma-ray emission using H.E.S.S. observations carried out from a thorough selection of unidentified Fermi-LAT Objects (UFOs) as dark matter subhalo candidates. Provided that the dark matter mass is higher than a few hundred GeV, the emission of the UFOs can be well described by dark matter annihilation models. No significant VHE gamma-ray emission is detected in any UFO dataset nor in their combination. We, therefore, derive constraints on the product of the velocity-weighted annihilation cross-section $langle sigma vrangle$ by the $J$-factor on dark matter models describing the UFO emissions. Upper limits at 95% confidence level are derived on $langle sigma vrangle J$ in $W^+W^-$ and $tau^+tau^-$ annihilation channels for the TeV dark matter particles. Focusing on thermal WIMPs, strong constraints on the $J$-factors are obtained from H.E.S.S. observations. Adopting model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution function for Milky Way (MW)-sized galaxies, only $lesssim 0.3$ TeV mass dark matter models marginally allow to explain observed UFO emission.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $left<sigma_mathrm{A} vright>$, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to $simeq 4 cdot 10^{-24}$ cm$^3$ s$^{-1}$, and $simeq 2.6 cdot 10^{-23}$ cm$^3$ s$^{-1}$ for the $ uoverline{ u}$ channel, respectively.
We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, <sigma v>, are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, <sigma v> and WIMP particle mass (m_chi).
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. five-telescope array observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels as well as the prompt gamma-gamma emission. For the $tau^+tau^-$ channel the limits reach a $langle sigma v rangle$ value of about $4times 10^{-22}$ cm3s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma-gamma channel, the upper limit reaches a $langle sigma v rangle$ value of about $5 times10^{-24}$ cm3s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200 with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
Weakly interacting massive particles (WIMPs) can be gravitationally captured by the Sun and trapped in its core. The annihilation of those WIMPs into Standard Model particles produces a spectrum of neutrinos whose energy distribution is related to the dark matter mass. In this work, we present the theoretical framework for relating an observed neutrino flux to the WIMP-nucleon cross section and summarize a previous solar WIMP search carried out by IceCube. We then outline an ongoing updated solar WIMP search, focusing on improvements over the previous search.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا