In this paper we show how to express RNA tertiary interactions via the concepts of tangled diagrams. Tangled diagrams allow to formulate RNA base triples and pseudoknot-interactions and to control the maximum number of mutually crossing arcs. In particular we study two subsets of tangled diagrams: 3-noncrossing tangled-diagrams with $ell$ vertices of degree two and 2-regular, 3-noncrossing partitions (i.e. without arcs of the form $(i,i+1)$). Our main result is an asymptotic formula for the number of 2-regular, 3-noncrossing partitions, denoted by $p_{3,2}(n)$, 3-noncrossing partitions over $[n]$. The asymptotic formula is derived by the analytic theory of singular difference equations due to Birkhoff-Trjitzinsky. Explicitly, we prove the formula $p_{3,2}(n+1)sim K 8^{n}n^{-7}(1+c_{1}/n+c_{2}/n^2+c_3/n^3)$ where $K,c_i$, $i=1,2,3$ are constants.