Do you want to publish a course? Click here

Magnetism and effect of anisotropy with one dimensional monatomic chain of cobalt by a Monte Carlo simulation

126   0   0.0 ( 0 )
 Added by Chinping Chen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic properties of the one dimensional (1D) monatomic chain of Co reported in a previous experimental work are investigated by a classical Monte Carlo simulation based on the anisotropic Heisenberg model. In our simulation, the effect of the on-site uniaxial anisotropy, Ku, on each individual Co atom and the nearest neighbour exchange interaction, J, are accounted for. The normalized coercivity HC(T)/HC(TCL) is found to show a universal behaviour, HC(T)/HC(TCL) = h0(e^{TB/T}-e) in the temperature interval, TCL < T < TBCal, arising from the thermal activation effect. In the above expression, h0 is a constant, TBCal is the blocking temperature determined by the calculation, and TCL is the temperature above which the classical Monte Carlo simulation gives a good description on the investigated system. The present simulation has reproduced the experimental features, including the temperature dependent coercivity, HC(T), and the angular dependence of the remanent magnetization, MR(phi,theta), upon the relative orientation (phi,theta) of the applied field H. In addition, the calculation reveals that the ferromagnetic-like open hysteresis loop is a result of a slow dynamical process at T < TBCal. The dependence of the dynamical TBCal on the field sweeping rate R, the on-site anisotropy constant Ku, and the number of atoms in the atomic chain, N, has been investigated in detail.



rate research

Read More

155 - Chi-Hang Lam , M.T. Lung , 2008
Accelerated algorithms for simulating the morphological evolution of strained heteroeptiaxy based on a ball and spring lattice model in three dimensions are explained. We derive exact Greens function formalisms for boundary values in the associated lattice elasticity problems. The computational efficiency is further enhanced by using a superparticle surface coarsening approximation. Atomic hoppings simulating surface diffusion are sampled using a multi-step acceptance-rejection algorithm. It utilizes quick estimates of the atomic elastic energies from extensively tabulated values modulated by the local strain. A parameter controls the compromise between accuracy and efficiency of the acceptance-rejection algorithm.
We study the dynamics of one-dimensional (1D) interacting particles simulated with the event-chain Monte Carlo algorithm (ECMC). We argue that previou
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its liquid phase, from the spinodal point until densities above its freezing point. The equilibrium density of the liquid is significantly higher and the equilibrium energy of $-3.664(6)$ K significantly lower than in previous approximate descriptions. The solid phase has also been studied for three lattices up to high pressures, and we find that hcp lattice is slightly preferred. The liquid-solid phase transition has been determined using the double-tangent Maxwell construction; at zero temperature, bulk tritium freezes at a pressure of $P=9(1)$ bar.
The unusual thermodynamic properties of the Ising antiferromagnet supplemented with a ferromagnetic, mean-field term are outlined. This simple model is inspired by more realistic models of spin-crossover materials. The phase diagram is estimated using Metropolis Monte Carlo methods, and differences with preliminary Wang-Landau Monte Carlo results for small systems are noted.
We use Monte Carlo simulations to study ${rm Ni Fe_2O_4}$ nanoparticles. Finite size and surface effects differentiate them from their bulk counterparts. A continuous version of the Wang-Landau algorithm is used to calculate the joint density of states $g(M_z, E)$ efficiently. From $g(M_z, E)$, we obtain the Bragg-Williams free energy of the particle, and other physical quantities. The hysteresis is observed when the nanoparticles have both surface disorder and surface anisotropy. We found that the finite coercivity is the result of interplay between surface disorder and surface anisotropy. If the surface disorder is absent or the surface anisotropy is relatively weak, the nanoparticles often exhibit superparamagnetism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا