Do you want to publish a course? Click here

Jet quenching parameter hat q in the stochastic QCD vacuum with Landau damping

240   0   0.0 ( 0 )
 Added by Dmitri Antonov
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We argue that the radiative energy loss of a parton traversing the quark-gluon plasma is determined by Landau damping of soft modes in the plasma. Using this idea, we calculate the jet quenching parameter of a gluon. The calculation is done in SU(3) quenched QCD within the stochastic vacuum model. At the LHC-relevant temperatures, the result depends on the gluon condensate, the vacuum correlation length, and the gluon Debye mass. Numerically, when the temperature varies from T=T_c to T=900 MeV, the jet quenching parameter rises from hat q=0 to approximately 1.8 GeV^2/fm. We compare our results with the predictions of perturbative QCD and other calculations.



rate research

Read More

Within a multi-phase transport model with string melting scenario, jet transport parameter $hat{q}$ is calculated in Au+Au collisions at $sqrt{s_{NN} } $= 200 GeV and Pb+Pb collisions at $sqrt{s_{NN} } $= 2.76 TeV. The $hat{q}$ increases with the increasing of jet energy for both partonic phase and hadronic phase. The energy and path length dependences of $hat{q}$ in full heavy-ion evolution are consistent with the expectations of jet quenching. The correlation between jet transport parameter $hat{q}$ and dijet transverse momentum asymmetry $A_{J}$ is mainly investigated, which discloses that a larger $hat{q}$ corresponds to a larger $A_{J}$. It supports a consistent jet energy loss picture from the two viewpoints of single jet and dijet. It is proposed to measure dijet asymmetry distributions with different jet transport parameter ranges as a new potential method to study jet quenching physics in high energy heavy-ion collisions.
We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ is responsible for the unusual kinetic properties of QGP. In this paper, we study the contribution of the monopoles to jet quenching phenomenon, using the BDMPS framework and hydrodynamic backgrounds. In the lowest order for cross sections, we calculate the nuclear modification factor, $R_text{AA},$ and azimuthal anisotropy, $v_2$, of jets, as well as the dijet asymmetry, $A_j$, and compare those to the available data. We find relatively good agreement with experiment when using realistic hydrodynamic backgrounds. In addition, we find that event-by-event fluctuations are not necessary to reproduce $R_text{AA}$ and $v_2$ data, but play a role in $A_j$. Since the monopole-induced effects are maximal at $Tapprox T_c$, we predict that their role should be significantly larger, relative to quarks and gluons, at lower RHIC energies.
We report the effect of magnetic field on estimation of jet transport coefficient, $hat{q}$ using a simplified quasi-particle model. Our adopted quasi-particle model introduces temperature and magnetic field dependent degeneracy factors of partons, which are tuned by fitting the magneto-thermodynamical data of lattice quantum chromodynamics. In absence of magnetic field, $hat{q}$ is estimated by using the temperature dependent degeneracy factor. At finite magnetic field, ${hat q}$ splits into parallel and perpendicular components, whose magnetic field dependent part has two sources. One is field dependent degeneracy factor and another is phase space part, guided from shear viscosity to entropy density ratio. Their collective role provides an enhanced jet transport coefficients, which should be considered in detailed jet quenching phenomenology in presence of magnetic field.
Accounting for the two independent correlation functions of the QCD vacuum, we improve the simple and consistent description given by the model of the stochastic vacuum to the high-energy pp and pbar-p data, with a new determination of parameters of non-perturbative QCD. The increase of the hadronic radii with the energy accounts for the energy dependence of the observables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا