Do you want to publish a course? Click here

Moments of generalized parton distributions and quark angular momentum of the nucleon

142   0   0.0 ( 0 )
 Added by Munehisa Ohtani
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The internal structure of hadrons is important for a variety of topics, including the hadron form factors, proton spin and spin asymmetry in polarized proton scattering. For a systematic study generalized parton distributions (GPDs) encode important information on hadron structure in the entire impact parameter space. We report on a computation of nucleon GPDs based on simulations with two dynamical non-perturbatively improved Wilson quarks with pion masses down to 350MeV. We present results for the total angular momentum of quarks with chiral extrapolation based on covariant baryon chiral perturbation theory.



rate research

Read More

105 - W. Schroers 2003
We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.
This talk presents recent calculations in full QCD of the lowest three moments of generalized parton distributions and the insight they provide into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon. In addition, new exploratory calculations in the chiral regime of full QCD are discussed.
164 - C. Alexandrou 2019
We present results for the moments of nucleon isovector vector and axial generalised parton distribution functions computed within lattice QCD. Three ensembles of maximally twisted mass clover-improved fermions simulated with a physical value of the pion mass are analyzed. Two of these ensembles are generated using two degenerate light quarks. A third ensemble is used having, in addition to the light quarks, strange and charm quarks in the sea. A careful analysis of the convergence to the ground state is carried out that is shown to be essential for extracting the correct nucleon matrix elements. This allows a controlled determination of the unpolarised, helicity and tensor second Mellin moments. The vector and axial-vector generalised form factors are also computed as a function of the momentum transfer square up to about 1 GeV$^2$. The three ensembles allow us to check for unquenching effects and to assess lattice finite volume effects.
144 - C. Alexandrou 2013
We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N_f=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N_f=2+1+1 ensembles generated at three values of the lattice spacing, $a$. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of ${cal O}(a^2)$-terms. The moments of the generalized parton distributions are given in the $bar{rm MS}$ scheme at a scale of $ mu=2$ GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا