Do you want to publish a course? Click here

The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons

116   0   0.0 ( 0 )
 Added by Harold Weaver Jr
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. In order to meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer (RPA) with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft.

rate research

Read More

The Solar Wind Around Pluto (SWAP) instrument on NASAs New Horizon Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 AU observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T-V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T-V correlation clearly breaks down beyond 20 AU, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 AU indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.
The New Horizons ALICE instrument is a lightweight (4.4 kg), low-power (4.4 Watt) imaging spectrograph aboard the New Horizons mission to Pluto/Charon and the Kuiper Belt. Its primary job is to determine the relative abundances of various species in Plutos atmosphere. ALICE will also be used to search for an atmosphere around Plutos moon, Charon, as well as the Kuiper Belt Objects (KBOs) that New Horizons hopes to fly by after Pluto-Charon, and it will make UV surface reflectivity measurements of all of these bodies as well. The instrument incorporates an off-axis telescope feeding a Rowland-circle spectrograph with a 520-1870 angstroms spectral passband, a spectral point spread function of 3-6 angstroms FWHM, and an instantaneous spatial field-of-view that is 6 degrees long. Different input apertures that feed the telescope allow for both airglow and solar occultation observations during the mission. The focal plane detector is an imaging microchannel plate (MCP) double delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI) and a focal surface that matches the instruments 15-cm diameter Rowland-circle. In what follows, we describe the instrument in greater detail, including descriptions of its ground calibration and initial in flight performance.
The NASA New Horizons spacecraft flies past Pluto on July 14, 2015, carrying two instruments that detect charged particles. Pluto has a tenuous, extended atmosphere that is escaping the weak gravity of the planet. The interaction of the solar wind with the escaping atmosphere of Pluto depends on solar wind conditions as well as the vertical structure of the atmosphere. We have analyzed Voyager 2 particles and fields measurements between 25 and 39 AU and present their statistical variations. We have adjusted these predictions to allow for the declining activity of the Sun and solar wind output. We summarize the range of SW conditions that can be expected at 33 AU and survey the range of scales of interaction that New Horizons might experience. Model estimates for the solar wind stand-off distance vary from approximately 7 to 1000 RP with our best estimate being around 40 RP (where we take the radius of Pluto to be RP=1184 km).
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25-2.50 micron spectral images for studying surface compositions, and measurements of Plutos atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to acheive the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth-moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).
Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Plutos atmosphere. While the lower atmosphere (at altitudes <200 km) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N$_2$) dominates the atmosphere (at altitudes <1800 km or so), while methane (CH$_4$), acetylene (C$_2$H$_2$), ethylene (C$_2$H$_4$), and ethane (C$_2$H$_6$) are abundant minor species, and likely feed the production of an extensive haze which encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Plutos atmosphere to space. It is unclear whether the current state of Plutos atmosphere is representative of its average state--over seasonal or geologic time scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا