We present a set of inner boundary conditions for the numerical construction of dynamical black hole space-times, when employing a 3+1 constrained evolution scheme and an excision technique. These inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner boundary conditions for the radiative modes.
We initiate the development of a horizon-based initial (or rather final) value formalism to describe the geometry and physics of the near-horizon spacetime: data specified on the horizon and a future ingoing null boundary determine the near-horizon geometry. In this initial paper we restrict our attention to spherically symmetric spacetimes made dynamic by matter fields. We illustrate the formalism by considering a black hole interacting with a) inward-falling, null matter (with no outward flux) and b) a massless scalar field. The inward-falling case can be exactly solved from horizon data. For the more involved case of the scalar field we analytically investigate the near slowly evolving horizon regime and propose a numerical integration for the general case.
In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More specifically, dynamical horizons provide appropriate inner screens in a 3+1 setting and, in this context, we have shown that an effective-curvature vector measured at the common horizon produced in a head-on collision merger can be correlated with the flux of linear Bondi-momentum at null infinity. In this paper we provide a more sound geometric basis to this picture. First, we show that a rigidity property of dynamical horizons, namely foliation uniqueness, leads to a preferred class of null tetrads and Weyl scalars on these hypersurfaces. Second, we identify a heuristic horizon news-like function, depending only on the geometry of spatial sections of the horizon. Fluxes constructed from this function offer refined geometric quantities to be correlated with Bondi fluxes at infinity, as well as a contact with the discussion of quasi-local 4-momentum on dynamical horizons. Third, we highlight the importance of tracking the internal horizon dual to the apparent horizon in spatial 3-slices when integrating fluxes along the horizon. Finally, we discuss the link between the dissipation of the non-stationary part of the horizons geometry with the viscous-fluid analogy for black holes, introducing a geometric prescription for a slowness parameter in black-hole recoil dynamics.
The understanding of strong-field dynamics near black-hole horizons is a long-standing and challenging prob- lem in general relativity. Recent advances in numerical relativity and in the geometric characterization of black- hole horizons open new avenues into the problem. In this first paper in a series of two, we focus on the analysis of the recoil occurring in the merger of binary black holes, extending the analysis initiated in [1] with Robinson- Trautman spacetimes. More specifically, we probe spacetime dynamics through the correlation of quantities defined at the black-hole horizon and at null infinity. The geometry of these hypersurfaces responds to bulk gravitational fields acting as test screens in a scattering perspective of spacetime dynamics. Within a 3 + 1 approach we build an effective-curvature vector from the intrinsic geometry of dynamical-horizon sections and correlate its evolution with the flux of Bondi linear momentum at large distances. We employ this setup to study numerically the head-on collision of nonspinning black holes and demonstrate its validity to track the qualita- tive aspects of recoil dynamics at infinity. We also make contact with the suggestion that the antikick can be described in terms of a slowness parameter and how this can be computed from the local properties of the horizon. In a companion paper [2] we will further elaborate on the geometric aspects of this approach and on its relation with other approaches to characterize dynamical properties of black-hole horizons.
General Relativity predicts the existence of black-holes. Access to the complete space-time manifold is required to describe the black-hole. This feature necessitates that black-hole dynamics is specified by future or teleological boundary condition. Here we demonstrate that the statistical mechanical description of black-holes, the raison detre behind the existence of black-hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm --- Einsteins equations when projected on space-time horizons resemble Navier-Stokes equation of a fluid --- we show that the specific heat and the coefficient of bulk viscosity of the horizon-fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black-hole evaporation.
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.
J.L. Jaramillo
,E. Gourgoulhon
,I. Cordero-Carrion
.
(2007)
.
"Trapping Horizons as inner boundary conditions for black hole spacetimes"
.
Jose Luis Jaramillo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا