Do you want to publish a course? Click here

XMM-Newton observations of XTE J1817-330 and XTE J1856+053

231   0   0.0 ( 0 )
 Added by Gloria Sala
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The black hole candidate XTE J1817-330 was discovered in outburst on 26 January 2006 with RXTE/ASM. One year later, on 28 February 2007, another X-ray transient discovered in 1996, XTE J1856+053, was detected by RXTE during a new outburst. We report on the spectra obtained by XMM-Newton of these two black hole candidates.



rate research

Read More

The X-ray binary XTE J1817-330 was discovered in outburst on 26 January 2006 with RXTE/ASM. One year later, another X-ray transient discovered in 1996, XTE J1856+053, was detected by RXTE during a new outburst on 28 February 2007. We triggered XMM-Newton target of opportunity observations on these two objects to constrain their parameters and search for a stellar black holes. We summarize the properties of these two X-ray transients and show that the soft X-ray spectra indicate indeed the presence of an accreting stellar black hole in each of the two systems.
The galactic black hole candidate XTE J1817-330 was discovered in outburst by RXTE in January 2006. We present here the results of an XMM-Newton Target of opportunity observation (TOO), performed on 13 March 2006 (44 days after the maximum), and an INTEGRAL observation performed on 15-18 February 2006 (18 days after the maximum). The EPIC-pn camera on-board XMM-Newton was used in the fast read-out Burst mode to avoid photon pile-up, while the RGSs were used in Spectroscopy high count-rate mode. We fit both the XMM-Newton and the INTEGRAL spectra with a two-component model consisting of a thermal accretion disk and a comptonizing hot corona. The soft X-ray spectrum is dominated by an accretion disk component, with a maximum temperature decreasing from 0.96+/-0.04 keV at the time of the INTEGRAL observation to 0.70+/-m0.01 keV on 13 March. The Optical Monitors on board INTEGRAL and XMM-Newton showed the source with magnitudes V: 11.3-11.4, U:15.0-15.1 and UVW1:14.7-14.8. The soft X-ray spectrum, together with the optical and UV data, show a low hydrogen column density towards the source, and several absorption lines, most likely of interstellar origin, are detected in the RGS spectrum: OI K-alpha, OI K-beta, OII, OIII and OVII, which trace both cold and hot components of the ISM. The soft X-ray spectrum indicates the presence of a black hole, with an estimate for the upper limit of the mass of 6.0(+4.0/-2.5) Msun.
111 - G. Sala , J. Greiner , M. Ajello 2008
On 28 February 2007 a new outburst of the previously known transient source XTE J1856+053 was detected with RXTE/ASM. We present here the results of an XMM-Newton (0.5-10.0 keV) Target of Opportunity observation performed on 14 March 2007, aimed at constraining the mass of the compact object in this X-ray binary and determining its main properties. The EPIC-pn camera was used in Timing mode and its spectrum fit together with the RGS data. IR observations with GROND at the 2.2 m telescope in La Silla provide further information on the system. The X-ray light curve shows that both the 1996 and the 2007 outbursts had two peaks. The X-ray spectrum is well fit with a thermal accretion disk model, with kT=0.75+/-0.01 keV and foreground absorption N_H=4.5(+/-0.1)E22 cm**-2. The low disk temperature favours a black-hole as accreting object, with an estimated mass in the range 1.3-4.2 M_sun. From the IR upper limits we argue that XTE J1856+053 is a low mass X-ray binary. We estimate the orbital period of the system to be between 3 and 12 hours.
398 - K. Sriram , A. R. Rao , C. S. Choi 2012
The evolution of different types of quasi-periodic oscillations (QPOs) and the coupled radiative/physical changes in the accretion disk are still poorly understood. In a few black hole binaries it was found that fast evolution of QPOs is associated with spectral variations. Such studies in other black hole binaries are important to understand the QPO phenomenon. For the black hole transient XTE J1817-330, we study fast QPO transitions and accompanying spectral variations to investigate what causes the spectral variation during the QPO transition. Roy et al. (2011) found QPOs in ten RXTE observations of XTE J1817-330. We found that, among the ten observations, only one observation shows erratic dips in its X-ray light curve. The power density spectra and the corresponding energy spectra were extracted and analyzed for the dip and non-dip sections of the light curve. We found that type-B $sim$6 Hz QPO changes into type-A QPO in a few tens of seconds along with a flux decrease. This transient evolution is accompanied with a significant spectral variation. We report a transient QPO feature and accompanying spectral variation in XTE J1817-330. Based on our findings, we discuss the origin of fast evolution of QPOs and spectral variations.
We report the result of an XMM-Newton observation of the black-hole X-ray transient XTE J1650-500 in quiescence. The source was not detected and we set upper limits on the 0.5-10 keV luminosity of 0.9e31-1.0e31 erg/s (for a newly derived distance of 2.6 kpc). These limits are in line with the quiescent luminosities of black-hole X-ray binaries with similar orbital periods (~7-8 hr)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا