After approximate replacing of Maxwellian distribution exponent with the rational polynomial fraction we have obtained precise analytical expression for and calculated the principal value of logarithmically divergent integral in the electron wave dispersion equation. At the same time our calculations have shown the presence of strong collisionless damping of the electromagnetic low-velocity (electron) wave in plasmas with Maxwellian-like electron velocity distribution function at some small, of the order of several per cents, differences from Maxwellian distribution in the main region of large electron densities, however due to the differences in the distribution tail, where electron density itself is negligibly small.