Supersonic dislocations observed in a plasma crystal


Abstract in English

Experimental results on the dislocation dynamics in a two-dimensional plasma crystal are presented. Edge dislocations were created in pairs in lattice locations where the internal shear stress exceeded a threshold and then moved apart in the glide plane at a speed higher than the sound speed of shear waves, $C_T$. The experimental system, a plasma crystal, allowed observation of this process at an atomistic (kinetic) level. The early stage of this process is identified as a stacking fault. At a later stage, supersonically moving dislocations generated shear-wave Mach cones.

Download