Do you want to publish a course? Click here

The stellar mass assembly of galaxies from z=0 to z=4. Analysis of a sample selected in the rest-frame near-infrared with Spitzer

105   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a sample of ~28,000 sources selected at 3.6-4.5 microns with Spitzer observations of the HDF-N, the CDF-S, and the Lockman Hole (surveyed area: ~664 arcmin^2), we study the evolution of the stellar mass content of the Universe at 0<z<4. We calculate stellar masses and photometric redshifts, based on ~2,000 templates built with stellar and dust emission models fitting the UV-to-MIR SEDs of galaxies with spectroscopic redshifts. We estimate stellar mass functions for different redshift intervals. We find that 50% of the local stellar mass density was assembled at 0<z<1 (average SFR:0.048 M_sun/yr/Mpc^3), and at least another 40% at 1<z<4 (average SFR: 0.074 M_sun/yr/Mpc^3). Our results confirm and quantify the ``downsizing scenario of galaxy formation. The most massive galaxies (M>10^12.0 M_sun) assembled the bulk of their stellar content rapidly (in 1-2 Gyr) beyond z~3 in very intense star formation events (producing high specific SFRs). Galaxies with 10^11.5<M/M_sun<10^12.0 assembled half of their stellar mass before z~1.5, and more than 90% of their mass was already in place at z~0.6. Galaxies with M<10^11.5 M_sun evolved more slowly (presenting smaller specific SFRs), assembling half of their stellar mass below z~1. About 40% of the local stellar mass density of 10^9.0<M/M_sun<10^11.0 galaxies was assembled below z~0.4, most probably through accretion of small satellites producing little star formation. The cosmic stellar mass density at z>2.5 is dominated by optically faint (R>25) red galaxies (Distant Red Galaxies or BzK sources) which account for ~30% of the global population of galaxies, but contribute at least 60% to the cosmic stellar mass density. Bluer galaxies (e.g., Lyman Break Galaxies) are more numerous but less massive, contributing less than 50% to the global stellar mass density at high redshift.



rate research

Read More

We present the evolution of the rest-frame optical luminosity density, of the integrated rest-frame optical color, and of the stellar mass density for a sample of Ks-band selected galaxies in the HDF-S. We derived the luminosity density in the rest-frame U, B, and V-bands and found that the luminosity density increases by a factor of 1.9+-0.4, 2.9+-0.6, and 4.9+-1.0 in the V, B, and U rest-frame bands respectively between a redshift of 0.1 and 3.2. We derived the luminosity weighted mean cosmic (U-B)_rest and (B-V)_rest colors as a function of redshift. The colors bluen almost monotonically with increasing redshift; at z=0.1, the (U-B)_rest and (B-V)_rest colors are 0.16 and 0.75 respectively, while at z=2.8 they are -0.39 and 0.29 respectively. We derived the luminosity weighted mean M/LV using the correlation between (U-V)_rest and log_{10} M/LV which exists for a range in smooth SFHs and moderate extinctions. We have shown that the mean of individual M/LV estimates can overpredict the true value by ~70% while our method overpredicts the true values by only ~35%. We find that the universe at z~3 had ~10 times lower stellar mass density than it does today in galaxies with LV>1.4 times 10^{10} h_{70}^-2 Lsol. 50% of the stellar mass of the universe was formed by $z~1-1.5. The rate of increase in the stellar mass density with decreasing redshift is similar to but above that for independent estimates from the HDF-N, but is slightly less than that predicted by the integral of the SFR(z) curve.
We have used FMOS on Subaru to obtain near-infrared spectroscopy of 123 far-infrared selected galaxies in COSMOS and obtain the key rest-frame optical emission lines. This is the largest sample of infrared galaxies with near-infrared spectroscopy at these redshifts. The far-infrared selection results in a sample of galaxies that are massive systems that span a range of metallicities in comparison with previous optically selected surveys, and thus has a higher AGN fraction and better samples the AGN branch. We establish the presence of AGN and starbursts in this sample of (U)LIRGs selected as Herschel-PACS and Spitzer-MIPS detections in two redshift bins (z~0.7 and z~1.5) and test the redshift dependence of diagnostics used to separate AGN from star-formation dominated galaxies. In addition, we construct a low redshift (z~0.1) comparison sample of infrared selected galaxies and find that the evolution from z~1.5 to today is consistent with an evolving AGN selection line and a range of ISM conditions and metallicities from the models of Kewley et al. (2013b). We find that a large fraction of (U)LIRGs are BPT-selected AGN using their new, redshift-dependent classification line. We compare the position of known X-ray detected AGN (67 in total) with the BPT selection and find that the new classification line accurately selects most of these objects (> 70%). Furthermore, we identify 35 new (likely obscured) AGN not selected as such by their X-ray emission. Our results have direct implications for AGN selection at higher redshift with either current (MOSFIRE, KMOS) or future (PFS, MOONS) spectroscopic efforts with near-infrared spectral coverage.
124 - J. M. Lotz , P. Madau 2005
We apply a new approach to quantifying galaxy morphology and identifying galaxy mergers to the rest-frame far-ultraviolet images of 82 z ~ 4 Lyman break galaxies (LBGs) and 55 1.2 < z < 1.8 emission-line galaxies in the GOODS and Ultra Deep Fields. We compare the distributions of the Gini coefficient (G), second-order moment of the brightest 20% of galaxy light (M20), and concentration (C) for high-redshift and low-redshift galaxies with average signal to noise per pixel > 2.5 and Petrosian radii > 0.3 arcsec. Ten of the 82 LBGs have M20 >= -1.1 and possess bright double or multiple nuclei, implying a major-merger fraction of star-forming galaxies ~ 10-25% at M_{FUV} < -20, depending on our incompleteness corrections. Galaxies with bulge-like morphologies (G >= 0.55, M20 < -1.6) make up ~ 30% of the z ~ 4 LBG sample, while the remaining ~ 50% have G and M20 values higher than expected for smooth bulges and disks and may be star-forming disks, minor-mergers or post-mergers. The star-forming z ~ 1.5 galaxy sample has a morphological distribution which is similar to the UDF z ~ 4 LBGs, with an identical fraction of major-merger candidates but fewer spheroids. The observed morphological distributions are roughly consistent with current hierarchical model predictions for the major-merger rates and minor-merger induced starbursts at z ~ 1.5 and ~4. We also examine the rest-frame FUV-NUV and FUV-B colors as a function of morphology and find no strong correlations at either epoch.
We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 < z < 8. We use new wide-field near-infrared data in GOODS-S from the CANDELS, HUDF09 and ERS programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z > 3.5, including 113 at z = 7 to 8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models, and measure the value of the UV spectral slope (beta) from the best-fit model spectrum. The median value of beta evolves significantly from -1.82 (+0.00,-0.04) at z = 4, to -2.37 (+0.26,-0.06) at z = 7. Additionally, we find that faint galaxies at z = 7 have beta = -2.68 (+0.39,-0.24) (~ -2.4 after correcting for observational bias); this is redder than previous claims in the literature, and does not require exotic stellar populations to explain their colors. This evolution can be explained by an increase in dust extinction, with the timescale consistent with low-mass AGB stars forming the bulk of the dust. We find no significant (< 2-sigma) correlation between beta and M_UV when measuring M_UV at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between beta and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have red colors at each redshift, implying that dust can build up quickly in massive galaxies, and that feedback is likely removing dust from low-mass galaxies at z > 7. Thus the stellar-mass - metallicity relation, previously observed up to z ~ 3, may extend out to z = 7 - 8.
Euclid, WFIRST, and HETDEX will make emission-line selected galaxies the largest observed constituent in the $z > 1$ universe. However, we only have a limited understanding of the physical properties of galaxies selected via their Ly$alpha$ or rest-frame optical emission lines. To begin addressing this problem, we present the basic properties of $sim 2,000$ AEGIS, COSMOS, GOODS-N, GOODS-S, and UDS galaxies identified in the redshift range $1.90 < z < 2.35$ via their [O II], H$beta$, and [O III] emission lines. For these $z sim 2$ galaxies, [O III] is generally much brighter than [O II] and H$beta$, with typical rest-frame equivalent widths of several hundred Angstroms. Moreover, these strong emission-line systems span an extremely wide range of stellar mass ($sim 3$ dex), star-formation rate ($sim 2$ dex), and [O III] luminosity ($sim 2$ dex). Comparing the distributions of these properties to those of continuum selected galaxies, we find that emission-line galaxies have systematically lower stellar masses and lower optical/UV dust attenuations. These measurements lay the groundwork for an extensive comparison between these rest-frame optical emission-line galaxies and Ly$alpha$ emitters identified in the HETDEX survey.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا