Do you want to publish a course? Click here

Broadband dielectric response of CaCu3Ti4O12: From dc to the electronic transition regime

152   0   0.0 ( 0 )
 Added by Peter Lunkenheimer
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on phonon properties and electronic transitions in CaCu3Ti4O12, a material which reveals a colossal dielectric constant at room temperature without any ferroelectric transition. The results of far- and mid-infrared measurements are compared to those obtained by broadband dielectric and millimeter-wave spectroscopy on the same single crystal. The unusual temperature dependence of phonon eigenfrequencies, dampings and ionic plasma frequencies of low lying phonon modes are analyzed and discussed in detail. Electronic excitations below 4 eV are identified as transitions between full and empty hybridized oxygen-copper bands and between oxygen-copper and unoccupied Ti 3d bands. The unusually small band gap determined from the dc-conductivity (~200 meV) compares well with the optical results.



rate research

Read More

In the present work the authors report results of broadband dielectric spectroscopy on various samples of CaCu3Ti4O12, including so far only rarely investigated single crystalline material. The measurements extend up to 1.3 GHz, covering more than nine frequency decades. We address the question of the origin of the colossal dielectric constants and of the relaxational behavior in this material, including the second relaxation reported in several recent works. For this purpose, the dependence of the temperature- and frequency-dependent dielectric properties on different tempering and surface treatments of the samples and on ac-field amplitude are investigated. Broadband spectra of a single crystal are analyzed by an equivalent circuit description, assuming two highly resistive layers in series to the bulk. Good fits could be achieved, including the second relaxation, which also shows up in single crystals. The temperature- and frequency-dependent intrinsic conductivity of CCTO is consistent with the Variable Range Hopping model. The second relaxation is sensitive to surface treatment and, in contrast to the main relaxation, also is strongly affected by the applied ac voltage. Concerning the origin of the two insulating layers, we discuss a completely surface-related mechanism assuming the formation of a metal-insulator diode and a combination of surface and internal barriers.
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
During the last decade, ab initio methods to calculate electronic structure of materials based on hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the case of small gap transition metal oxides, such as VO2, with rather subtle physics in the vicinity of the Fermi-surface, such hybrid functional schemes without the inclusion of expensive fully self-consistent GW corrections fail to yield this physics and incorrectly describe the features of the wave function of states near the Fermi-surface. While a fully self-consistent GW on top of hybrid functional approach does correct these wave functions as expected, and is found to be in general agreement with the results of a fully self-consistent GW approach based on semilocal functionals, it is much more computationally demanding as compared to the latter approach for the benefit of essentially the same results.
A wide range of disordered materials, including disordered correlated systems, show Universal Dielectric Response (UDR), followed by a superlinear power-law increase in their optical responses over exceptionally broad frequency regimes. While extensively used in various contexts over the years, the microscopics underpinning UDR remains controversial. Here, we investigate the optical response of the simplest model of correlated fermions, Falicov-Kimball model (FKM), across the continuous metal-insulator transition (MIT) and analyze the associated quantum criticality in detail using cluster extension of dynamical mean field theory (CDMFT). Surprisingly, we find that UDR naturally emerges in the quantum critical region associated with the continuous MIT. We tie the emergence of these novel features to a many-body orthogonality catastrophe accompanying the onset of strongly correlated electronic glassy dynamics close to the MIT, providing a microscopic realization of Jonschers time-honored proposal as well as a rationale for similarities in optical responses between correlated electronic matter and canonical glass formers.
LiCu2O2 is the first multiferroic cuprate to be reported and its ferroelectricity is induced by complex magnetic ordering in ground state, which is still in controversy today. Herein, we have grown nearly untwinned LiCu2O2 single crystals of high quality and systematically investigated their dielectric and ferroelectric behaviours in external magnetic fields. The highly anisotropic response observed in different magnetic fields apparently contradicts the prevalent bc- or ab- plane cycloidal spin model. Our observations give strong evidence supporting a new helimagnetic picture in which the normal of the spin helix plane is along the diagonal of CuO4 squares which form the quasi-1D spin chains by edge-sharing. Further analysis suggests that the spin helix in the ground state is elliptical and in the intermediate state the present c-axis collinear SDW model is applicable with some appropriate modifications. In addition, our studies show that the dielectric and ferroelectric measurements could be used as probes for the characterization of the complex spin structures in multiferroic materials due to the close tie between their magnetic and electric orderings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا