Do you want to publish a course? Click here

Spacetime structure of 5D hypercylindrical vacuum solutions with tension

117   0   0.0 ( 0 )
 Added by Inyong Cho
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate geometrical properties of 5D cylindrical vacuum solutions with a transverse spherical symmetry. The metric is uniform along the fifth direction and characterized by tension and mass densities. The solutions are classified by the tension-to-mass ratio. One particular example is the well-known Schwarzschild black string which has a curvature singularity enclosed by a horizon. We focus mainly on geometry of other solutions which possess a naked singularity. The light signal emitted by an object approaching the singularity reaches a distant observer with finite time, but is infinitely red-shifted.



rate research

Read More

We investigate the geodesic motions of a massive particle and light ray in the hyperplane orthogonal to the symmetry axis in the 5-dimensional hypercylindrical spacetime. The class of the solutions depends on one constant a which is the ratio of string mass density and tension. There exist unstable orbits in null geodesic only in some range of a. The innermost stable circular orbits in timelike geodesic also exist only in a certain range of the parameter a. The capture cross section and the deflection angle of light ray are also computed.
We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions of the well-known positive-frequency modes in the conformally-flat chart. We discuss in detail how these modes are defined globally in the two static charts and the region in their future. The global structure of these solutions leads to the well-known description of the Bunch-Davies vacuum state as an entangled state. Our results are expected to be useful not only for studying the thermal properties in the vacuum fluctuations in de Sitter spacetime but also for understanding the nonlocal properties of the vacuum state.
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fock de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
299 - Taiga Miyachi , Jiro Soda 2021
We study a false vacuum decay in a two-dimensional black hole spacetime background. The decay rate in the case that nucleation site locates at a black hole center has been calculated in the literature. We develop a method for calculating the decay rate of the false vacuum for a generic nucleation site. We find that the decay rate becomes larger when the nucleation site is close to the black hole horizon and coincides with that in Minkowski spacetime when the nucleation site goes to infinity.
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the multiverse idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, is different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u,v) light-cone coordinates as in Fig.(1). In quantum mechanics, the wavefunction is an analytic function of (u,v) that is sensitive to branch points at the horizons u=0 or v=0, with branch cuts attached to them. The wavefunction is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u,v) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or universes, connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u,v) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information doesnt flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is lost due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا