Do you want to publish a course? Click here

Granular Fluids

141   0   0.0 ( 0 )
 Added by James Dufty
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The terminology granular matter refers to systems with a large number of hard objects (grains) of mesoscopic size ranging from millimeters to meters. Geological examples include desert sand and the rocks of a landslide. But the scope of such systems is much broader, including powders and snow, edible products such a seeds and salt, medical products like pills, and extraterrestrial systems such as the surface regolith of Mars and the rings of Saturn. The importance of a fundamental understanding for granular matter properties can hardly be overestimated. Practical issues of current concern range from disaster mitigation of avalanches and explosions of grain silos to immense economic consequences within the pharmaceutical industry. In addition, they are of academic and conceptual importance as well as examples of systems far from equilibrium. Under many conditions of interest, granular matter flows like a normal fluid. In the latter case such flows are accurately described by the equations of hydrodynamics. Attention is focused here on the possibility for a corresponding hydrodynamic description of granular flows. The tools of nonequilibrium statistical mechanics, developed over the past fifty years for fluids composed of atoms and molecules, are applied here to a system of grains for a fundamental approach to both qualitative questions and practical quantitative predictions. The nonlinear Navier-Stokes equations and expressions for the associated transport coefficients are obtained.



rate research

Read More

The spontaneous symmetry breaking taking place in the direction perpendicular to the energy flux in a dilute vibrofluidized granular system is investigated, using both a hydrodynamic description and simulation methods. The latter include molecular dynamics and direct Monte Carlo simulation of the Boltzmann equation. A marginal stability analysis of the hydrodynamic equations, carried out in the WKB approximation, is shown to be in good agreement with the simulation results. The shape of the hydrodynamic profiles beyond the bifurcation is discussed.
276 - Andrea Fiege , Timo Aspelmeier , 2011
We study the velocity autocorrelation function (VACF) of a driven granular fluid in the stationary state in 3 dimensions. As the critical volume fraction of the glass transition in the corresponding elastic system is approached, we observe pronounced cage effects in the VACF as well as a strong decrease of the diffusion constant. At moderate densities the VACF is shown to decay algebraically in time (t^{-3/2}) like in a molecular fluid, as long as the driving conserves momentum locally.
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of motion for the coherent scattering function in two and three space dimensions. A glass transition is observed for all coefficients of restitution, epsilon, at a critical packing fraction, phi_c(epsilon), below random close packing. The divergence of timescales at the glass-transition implies a dependence on compression rate upon further increase of the density - similar to the cooling rate dependence of a thermal glass. The critical dynamics for coherent motion as well as tagged particle dynamics is analyzed and shown to be non-universal with exponents depending on space dimension and degree of dissipation.
We investigate the dynamics of an intruder pulled by a constant force in a dense two-dimensional granular fluid by means of event-driven molecular dynamics simulations. In a first step, we show how a propagating momentum front develops and compactifies the system when reflected by the boundaries. To be closer to recent experiments cite{candelier2010journey,candelier2009creep}, we then add a frictional force acting on each particle, proportional to the particles velocity. We show how to implement frictional motion in an event-driven simulation. This allows us to carry out extensive numerical simulations aiming at the dependence of the intruders velocity on packing fraction and pulling force. We identify a linear relation for small and a nonlinear regime for high pulling forces and investigate the dependence of these regimes on granular temperature.
We study a simple model of periodic contraction and extension of large intruders in a granular bed to understand the mechanism for swimming in an otherwise solid media. Using an event-driven simulation, we find optimal conditions that idealized swimmers must use to critically fluidize a sand bed so that it is rigid enough to support a load when needed, but fluid enough to permit motion with minimal resistance. Swimmers - or other intruders - that agitate the bed too rapidly produce large voids that prevent traction from being achieved, while swimmers that move too slowly cannot travel before the bed re-solidifies around them i.e., the swimmers locally probe the fundamental time-scale in a granular packing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا