Do you want to publish a course? Click here

The beginning of string theory: a historical sketch

234   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note we follow the historical development of the ideas that led to the formulation of String Theory. We start from the inspired guess of Veneziano and its extension to the scattering of $N$ scalar particles, then we describe how the study of its factorization properties allowed to identify the physical spectrum making the string worldsheet manifest and finally we discuss how the critical values of the intercept of the Regge trajectory and of the critical dimension were fixed to 1 and 26.



rate research

Read More

There are a wide variety of different vector formalisms currently utilized in engineering and physics. For example, Gibbs three-vectors, Minkowski four-vectors, complex spinors in quantum mechanics, quaternions used to describe rigid body rotations and vectors defined in Clifford geometric algebra. With such a range of vector formalisms in use, it thus appears that there is as yet no general agreement on a vector formalism suitable for science as a whole. This is surprising, in that, one of the primary goals of nineteenth century science was to suitably describe vectors in three-dimensional space. This situation has also had the unfortunate consequence of fragmenting knowledge across many disciplines, and requiring a significant amount of time and effort in learning the various formalisms. We thus historically review the development of our various vector systems and conclude that Cliffords multivectors best fulfills the goal of describing vectorial quantities in three dimensions and providing a unified vector system for science.
113 - R.H. Sanders 2014
I review the history and development of Modified Newtonian Dynamics (MOND) beginning with the phenomenological basis as it existed in the early 1980s. I consider Milgroms papers of 1983 introducing the idea and its consequences for galaxies and galaxy groups, as well as the initial reactions, both negative and positive. The early criticisms were primarily on matters of principle, such as the absence of conservation laws and perceived cosmological problems; an important step in addressing these issues was the development of the Lagrangian-based non-relativistic theory of Bekenstein and Milgrom. This theory led to the development of a tentative relativistic theory that formed the basis for later multi-field theories of gravity. On an empirical level the predictive success of the idea with respect to the phenomenology of galaxies presents considerable challenges for cold dark matter. For MOND the essential challenge remains the absence of a generally accepted theoretical underpinning of the idea and, thus, cosmological predictions. I briefly review recent progress in this direction. Finally I discuss the role and sociology of unconventional ideas in astronomy in the presence of a strongly entrenched standard paradigm.
Effective Field Theories have been used successfully to provide a bottom-up description of phenomena whose intrinsic degrees of freedom behave at length scales far different from their effective degrees of freedom. An example is the emergent phenomenon of bound nuclei, whose constituents are neutrons and protons, which in turn are themselves composed of more fundamental particles called quarks and gluons. In going from a fundamental description that utilizes quarks and gluons to an effective field theory description of nuclei, the length scales traversed span at least two orders of magnitude. In this article we provide an Effective Field Theory viewpoint on the topic of emergence, arguing on the side of reductionism and weak emergence. We comment on Andersons interpretation of constructionism and its connection to strong emergence.
181 - A.N. Schellekens 2013
If the results of the first LHC run are not betraying us, many decades of particle physics are culminating in a complete and consistent theory for all non-gravitational physics: the Standard Model. But despite this monumental achievement there is a clear sense of disappointment: many questions remain unanswered. Remarkably, most unanswered questions could just be environmental, and disturbingly (to some) the existence of life may depend on that environment. Meanwhile there has been increasing evidence that the seemingly ideal candidate for answering these questions, String Theory, gives an answer few people initially expected: a huge landscape of possibilities, that can be realized in a multiverse and populated by eternal inflation. At the interface of bottom-up and top-down physics, a discussion of anthropic arguments becomes unavoidable. We review developments in this area, focusing especially on the last decade.
72 - M. O. Katanaev 2019
The global conformal gauge is playing the crucial role in string theory providing the basis for quantization. Its existence for two-dimensional Lorentzian metric is known locally for a long time. We prove that if a Lorentzian metric is given on a plain then the conformal gauge exists globally on the whole ${mathbb R}^2$. Moreover, we prove the existence of the conformal gauge globally on the whole worldsheets represented by infinite strips with straight boundaries for open and closed bosonic strings. The global existence of the conformal gauge on the whole plane is also proved for the positive definite Riemannian metric.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا