Do you want to publish a course? Click here

PKS1932-46: a radio source in an interacting group?

335   0   0.0 ( 0 )
 Added by Katherine J. Inskip
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a multiwavelength study of the z=0.23 radio source PKS1932-46. VIMOS IFU spectroscopy is used to study the morphology, kinematics and ionisation state of the EELR surrounding this source, and also a companion galaxy at a similar redshift. Near- and far-IR imaging observations obtained using the NTT and SPITZER are used to analyse the underlying galaxy morphologies and the nature of the AGN. The host galaxy is identified as an ~M* elliptical. Combining Spitzer mid-IR with X-ray, optical and near-IR imaging observations of this source, we conclude that its AGN is underluminous for a radio source of this type, despite its status as a BLRG. However, given its relatively large [OIII] luminosity it is likely that the AGN was substantially more luminous in the recent past (<10^4 years ago). The EELR is remarkably extensive and complex, reminiscent of the systems observed around sources at higher redshifts/radio powers, and the gas is predominantly ionised by a mixture of AGN photoionisation and emission from young stars. We confirm the presence of a series of star-forming knots extending N-S from the host galaxy, with more prodigious star formation occuring in the merging companion galaxy to the northeast, which has sufficient luminosity at mid- to far-IR wavelengths to be classified as a LIRG. The most plausible explanation of our observations is that PKS1932-46 is a member of an interacting galaxy group, and that the impressive EELR is populated by star-forming, tidal debris. We suggest that the AGN itself may currently be fuelled by material associated either with the current interaction, or with a previous merger event. Surprisingly, it is the companion object, rather than the radio source host galaxy, which is undergoing the bulk of the star formation activity within the group.



rate research

Read More

295 - O.V.Verkhodanov 2001
The steep spectrum of IRAS F02044+0957 was obtained with the RATAN-600 radio telescope at four frequencies. Optical spectroscopy of the system components, was carried out with the 2.1m telescope of the Guillermo Haro Observatory. Observational data allow us to conclude that this object is a pair of interacting galaxies, a LINER and a HII galaxy, at $z=0.093$.
73 - D. A. Boboltz 2006
We have used the Very Large Array (VLA), linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 46 radio stars in the International Celestial Reference Frame (ICRF). Positions were obtained in the ICRF directly through phase referencing of the stars to nearby ICRF quasars whose positions are accurate at the 0.25 mas level. Radio star positions are estimated to be accurate at the 10 mas level, with position errors approaching a few milli-arcseconds for some of the stars observed. Our measured positions were combined with previous measurements taken from as early as 1978 to obtain proper motion estimates for all 46 stars with average uncertainties of ~1.7 mas/yr. We compared our radio star positions and proper motions with the Hipparcos Catalogue data, and find consistency in the reference frames produced by each data set on the 1-sigma level, with errors of ~2.7 mas per axis for the reference frame orientation angles at our mean epoch of 2003.78. No significant spin is found between our radio data frame and the Hipparcos Celestial Reference Frame (HCRF) with largest rotation rates of +0.55 and -0.41 mas/yr around the x and z axes, respectively, with 1-sigma errors of 0.36 mas/yr. Thus, our results are consistent with a non-rotating Hipparcos frame with respect to the ICRF.
During star formation, the accretion disk drives fast MHD winds which usually contain two components, a collimated jet and a radially distributed wide-angle wind. These winds entrain the surrounding ambient gas producing molecular outflows. We report recent observation of 12CO (2-1) emission of the HH 46/47 molecular outflow by the Atacama Large Millimeter/sub-millimeter Array, in which we identify multiple wide-angle outflowing shell structures in both the blue and red-shifted outflow lobes. These shells are highly coherent in position-position-velocity space, extending to >40-50 km/s in velocity and 10^4 au in space with well defined morphology and kinematics. We suggest these outflowing shells are the result of the entrainment of ambient gas by a series of outbursts from an intermittent wide-angle wind. Episodic outbursts in collimated jets are commonly observed, yet detection of a similar behavior in wide-angle winds has been elusive. Here we show clear evidence that the wide-angle component of the HH 46/47 protostellar outflows experiences similar variability seen in the collimated component.
114 - Manon Defosseux 2010
We introduce a new interacting particles model with blocking and pushing interactions. Particles evolve on the positive line jumping on their own volition rightwards or leftwards according to geometric jumps with parameter q. We show that the model involves a Pieri-type formula for the orthogonal group. We prove that the two extreme cases - q=0 and q=1 - lead respectively to a random tiling model studied by Borodin and Kuan and to a random matrix model.
Infrared-Faint Radio Sources represent a new and unexpected class of object which is bright at radio wavelengths but unusually faint at infrared wavelengths. If, like most mJy radio sources, they were either conventional active or star-forming galaxies in the local Universe, we would expect them to be detectable at infrared wavelengths, and so their non-detection by the Spitzer Space Telescope is surprising. Here we report the detection of one of these sources using Very Long Baseline Interferometry, from which we conclude that the sources are driven by Active Galactic Nuclei. We suggest that these sources are either normal radio-loud quasars at high redshift or abnormally obscured radio galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا