We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least Nsim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.