Do you want to publish a course? Click here

Range-based attacks on links in random scale-free networks

444   0   0.0 ( 0 )
 Added by Gong Baihua
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

$Range$ and $load$ play keys on the problem of attacking on links in random scale-free (RSF) networks. In this Brief Report we obtain the relation between $range$ and $load$ in RSF networks analytically by the generating function theory, and then give an estimation about the impact of attacks on the $efficiency$ of the network. The analytical results show that short range attacks are more destructive for RSF networks, and are confirmed numerically. Further our results are consistent with the former literature (Physical Review E textbf{66}, 065103(R) (2002)).



rate research

Read More

Random walks on discrete lattices are fundamental models that form the basis for our understanding of transport and diffusion processes. For a single random walker on complex networks, many properties such as the mean first passage time and cover time are known. However, many recent applications such as search engines and recommender systems involve multiple random walkers on complex networks. In this work, based on numerical simulations, we show that the fraction of nodes of scale-free network not visited by $W$ random walkers in time $t$ has a stretched exponential form independent of the details of the network and number of walkers. This leads to a power-law relation between nodes not visited by $W$ walkers and by one walker within time $t$. The problem of finding the distinct nodes visited by $W$ walkers, effectively, can be reduced to that of a single walker. The robustness of the results is demonstrated by verifying them on four different real-world networks that approximately display scale-free structure.
Susceptibility of scale free Power Law (PL) networks to attacks has been traditionally studied in the context of what may be termed as {em instantaneous attacks}, where a randomly selected set of nodes and edges are deleted while the network is kept {em static}. In this paper, we shift the focus to the study of {em progressive} and instantaneous attacks on {em reactive} grown and random PL networks, which can respond to attacks and take remedial steps. In the process, we present several techniques that managed networks can adopt to minimize the damages during attacks, and also to efficiently recover from the aftermath of successful attacks. For example, we present (i) compensatory dynamics that minimize the damages inflicted by targeted progressive attacks, such as linear-preferential deletions of nodes in grown PL networks; the resulting dynamic naturally leads to the emergence of networks with PL degree distributions with exponential cutoffs; (ii) distributed healing algorithms that can scale the maximum degree of nodes in a PL network using only local decisions, and (iii) efficient means of creating giant connected components in a PL network that has been fragmented by attacks on a large number of high-degree nodes. Such targeted attacks are considered to be a major vulnerability of PL networks; however, our results show that the introduction of only a small number of random edges, through a {em reverse percolation} process, can restore connectivity, which in turn allows restoration of other topological properties of the original network. Thus, the scale-free nature of the networks can itself be effectively utilized for protection and recovery purposes.
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with probability proportional to (kq)^(-alpha), where alpha is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in which the probability for an edge between nodes $i$ and $j$ to be retained is proportional to $(k_ik_j)^{-alpha}$ with $k_i$ and $k_j$ the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating functions method. The theory is found to agree quite well with simulations. By introducing an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well described by the $qto 1$ limit of the $q$-state Potts model with inhomogeneous couplings.
Extreme events taking place on networks are not uncommon. We show that it is possible to manipulate the extreme events occurrence probabilities and its distribution over the nodes on scale-free networks by tuning the nodal capacity. This can be used to reduce the number of extreme events occurrences on a network. However monotonic nodal capacity enhancements, beyond a point, do not lead to any substantial reduction in the number of extreme events. We point out the practical implication of this result for network design in the context of reducing extreme events occurrences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا