Do you want to publish a course? Click here

Strong-coupling expansion of cusp anomaly and gluon amplitudes from quantum open strings in AdS_5 x S^5

250   0   0.0 ( 0 )
 Added by Radu Roiban
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

An important ``observable of planar N=4 SYM theory is the scaling function f(lambda) that appears in the anomalous dimension of large spin twist 2 operators and also in the cusp anomaly of light-like Wilson loops. The non-trivial relation between the anomalous dimension and the Wilson interpretations of f(lambda) is well-understood on the perturbative gauge theory side of the AdS/CFT duality. In the first part of this paper we present the dual string-theory counterpart of this relation, to all orders in lambda^(-1/2) expansion. As a check, we explicitly compute the leading 1-loop string sigma model correction to the cusp Wilson loop, reproducing the same subleading coefficient in f(lambda) as found earlier in the spinning closed string case. The same function f(lambda) appears also in the resummed form of the 4-gluon amplitude as discussed at weak coupling by Bern, Dixon and Smirnov and recently found at the leading order at strong coupling by Alday and Maldacena (AM). Here we attempt to extend this approach to subleading order in lambda^(-1/2) by computing the IR singular part of 1-loop string correction to the corresponding T-dual Wilson loop. We discuss explicitly the 1-cusp case and comment on apparent problems with the dimensional regularization proposal of AM when directly applied order by order in strong coupling (inverse string tension) expansion.



rate research

Read More

90 - R. Roiban , A.A. Tseytlin 2008
We consider the world surface in AdS_5 that ends on two intersecting null lines at the boundary. The corresponding string partition function describes the expectation value of the Wilson line with a null cusp in dual large N maximally supersymmetric gauge theory and thus determines the cusp anomaly function f(lambda) of the gauge coupling. The first two coefficients in its strong-coupling or string inverse tension expansion were determined in hep-th/0210115 (a_1=1) and in arXiv:0707.4254 (a_2=- 3 log 2). Here we find that the 2-loop coefficient is a_2 = - K where K is the Catalans constant. This is in agreement (expected on general grounds) with the previous results for f(lambda) as the coefficient of log(S) term in the energy of closed spinning string in AdS_5. The string theory value for a_2 is in agreement with the numerical result in hep-th/0611135 and the recent analytic result in arXiv:0708.3933 for the solution of the BES equation following from the asymptotic Bethe ansatz for the spectrum of the theory. We explicitly verify the cancellation of 2-loop 2d logarithmic divergences thus demonstrating the quantum consistency of the AdS_5 x S^5 superstring. We also discuss the structure of higher loop string corrections to the cusp anomaly giving a 2d QFT diagrammatic interpretation to the strong-coupling expansion of the cusp anomaly function as solution of the BES equation found in arXiv:0708.3933.
Using information from the marginality conditions of vertex operators for the AdS_5 x S^5 superstring, we determine the structure of the dependence of the energy of quantum string states on their conserved charges and the string tension proportional to lambda^(1/2). We consider states on the leading Regge trajectory in the flat space limit which carry one or two (equal) spins in AdS_5 or S^5 and an orbital momentum in S^5, with Konishi multiplet states being particular cases. We argue that the coefficients in the energy may be found by using a semiclassical expansion. By analyzing the examples of folded spinning strings in AdS_5 and S^5 as well as three cases of circular two-spin strings we demonstrate the universality of transcendental (zeta-function) parts of few leading coefficients. We also show the consistency with target space supersymmetry with different states belonging to the same multiplet having the same non-trivial part of the energy. We suggest, in particular, that a rational coefficient (found by Basso for the folded string using Bethe Ansatz considerations and which, in general, is yet to be determined by a direct two-loop string calculation) should, in fact, be universal.
105 - G. Arutyunov , S. Frolov 2004
We find the Hamiltonian for physical excitations of the classical bosonic string propagating in the AdS_5 x S^5 space-time. The Hamiltonian is obtained in a so-called uniform gauge which is related to the static gauge by a 2d duality transformation. The Hamiltonian is of the Nambu type and depends on two parameters: a single S^5 angular momentum J and the string tension lambda. In the general case both parameters can be finite. The space of string states consists of short and long strings. In the sector of short strings the large J expansion with lambda=lambda/J^2 fixed recovers the plane-wave Hamiltonian and higher-order corrections recently studied in the literature. In the strong coupling limit lambdato infty, J fixed, the energy of short strings scales as sqrt[4]{lambda} while the energy of long strings scales as sqrt{lambda}. We further show that the gauge-fixed Hamiltonian is integrable by constructing the corresponding Lax representation. We discuss some general properties of the monodromy matrix, and verify that the asymptotic behavior of the quasi-momentum perfectly agrees with the one obtained earlier for some specific cases.
We consider classical superstrings propagating on AdS_5 x S^5 space-time. We consistently truncate the superstring equations of motion to the so-called su(1|1) sector. By fixing the uniform gauge we show that physical excitations in this sector are described by two complex fermionic degrees of freedom and we obtain the corresponding Lagrangian. Remarkably, this Lagrangian can be cast in a two-dimensional Lorentz-invariant form. The kinetic part of the Lagrangian induces a non-trivial Poisson structure while the Hamiltonian is just the one of the massive Dirac fermion. We find a change of variables which brings the Poisson structure to the canonical form but makes the Hamiltonian nontrivial. The Hamiltonian is derived as an exact function of two parameters: the total S^5 angular momentum J and string tension lambda; it is a polynomial in 1/J and in sqrt{lambda} where lambda=frac{lambda}{J^2} is the effective BMN coupling. We identify the string states dual to the gauge theory operators from the closed su(1|1) sector of N=4 SYM and show that the corresponding near-plane wave energy shift computed from our Hamiltonian perfectly agrees with that recently found in the literature. Finally we show that the Hamiltonian is integrable by explicitly constructing the corresponding Lax representation.
We study a general class of spinning pulsating strings in $(AdS_5 times S^5)_{varkappa}$ background. For these family of solitons, we examine the scaling relation between the energy, spin or angular momentum. We verify that in $varkappa rightarrow 0 $ limit these relations reduce to the undeformed $AdS_5 times S^5$ case. We further study an example of a string which is spinning in the $varkappa$-deformed AdS$_5$ and S$^5$ simultaneously and find out the scaling relation among various conserved charges.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا