Do you want to publish a course? Click here

Molecular production at a wide Feshbach resonance in Fermi-gas of cooled atoms

131   0   0.0 ( 0 )
 Added by Artem G. Abanov
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The problem of molecular production from degenerate gas of fermions at a wide Feshbach resonance, in a single-mode approximation, is reduced to the linear Landau-Zener problem for operators. The strong interaction leads to significant renormalization of the gap between adiabatic levels. In contrast to static problem the close vicinity of exact resonance does not play substantial role. Two main physical results of our theory is the high sensitivity of molecular production to the initial value of magnetic field and generation of a large BCS condensate distributed over a broad range of momenta in inverse process of the molecule dissociation.



rate research

Read More

Within the framework of the variational approach the ground state is studied in a gas of Fermi atoms near the Feshbach resonance at negative scattering length. The structure of the originating superfluid state is formed by two coherently bound subsystems. One subsystem is that of quasi molecules in the closed channel and the other is a system of pairs of atoms in the open channel. The set of equations derived allows us to describe the properties of the ground state at an arbitrary magnitude of the parameters. In particular, it allows one to find a gap in the spectrum of single-particle Fermi excitations and sound velocity characterizing a branch of collective Bose excitations.
We determine the adiabatic phase diagrams for a resonantly-coupled system of Fermi atoms and Bose molecules confined in a harmonic trap by using the local density approximation. The key idea of our work is conservation of entropy through the adiabatic process. We also calculate the molecular conversion efficiency as a function of the initial temperature. Our work helps to understand recent experiments on the BCS-BEC crossover, in terms of the initial temperature measured before a sweep of the magnetic field.
We determine the adiabatic phase diagram of a resonantly-coupled system of Fermi atoms and Bose molecules confined in the harmonic trap by using the local density approximation. The adiabatic phase diagram shows the fermionic condensate fraction composed of condensed molecules and Cooper pair atoms. The key idea of our work is conservation of entropy through the adiabatic process, extending the study of Williams et al. [Williams et al., New J. Phys. 6, 123 (2004)] for an ideal gas mixture to include the resonant interaction in a mean-field theory. We also calculate the molecular conversion efficiency as a function of initial temperature. Our work helps to understand recent experiments on the BCS-BEC crossover, in terms of the initial temperature measured before a sweep of the magnetic field.
We present a model space particle-hole Greens function calculation for the quadrupole excitations of cold Fermi gas near Feshbach resonance using a simple model where atoms are confined in a harmonic oscillator potential. Both the Tamm-Dancoff and random phase approximations are employed. By summing up exactly the ladder diagrams between a pair of interacting atoms to all orders, we obtain a renormalized atomic interaction which has well defined and identical limits as the scattering length tends to $pm infty$. The experimentally observed abrupt rise in the excitation spectrum and its associated large decay width are satisfactorily reproduced by our calculation.
In this letter we show that the recently theoretically predicted and experimentally observed orbital Feshbach resonance in alkali-earth-like Yb-173 atom is a narrow resonance in energy, while it is hundreds Gauss wide in term of magnetic field strength, taking the advantage that the magnetic moment difference between the open and closed channels is quite small. Therefore this is an ideal platform for the experimental realization of a strongly interacting Fermi superfluid with narrow resonance. We show that the transition temperature for the Fermi superfluid in this system, especially at the BCS side of the resonance, is even higher than that in a wide resonance, which is also due to the narrow character of this resonance. Our results will encourage experimental efforts to realize Fermi superfluid in the alkali-earth-like Yb-173 system, the properties of which will be complementary to extensively studied Fermi superfluids nearby a wide resonance in alkali K-40 and Li-6 systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا