Do you want to publish a course? Click here

The Geneva-Copenhagen Survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk

259   0   0.0 ( 0 )
 Added by Birgitta Nordstrom
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ages, metallicities, space velocities, and Galactic orbits of stars in the Solar neighbourhood are fundamental observational constraints on models of galactic disk evolution. We aim to consolidate the calibrations of uvby photometry into Te, [Fe/H], distance, and age for F and G stars and rediscuss the results of the Geneva-Copenhagen Survey (Nordstrom et al. 2004; GCS) in terms of the evolution of the disk. We substantially improve the Te and [Fe/H] calibrations for early F stars, where spectroscopic temperatures have large systematic errors. Our recomputed ages are in excellent agreement with the independent determinations by Takeda et al. (2007), indicating that isochrone ages can now be reliably determined. The revised G-dwarf metallicity distribution remains incompatible with closed-box models, and the age-metallicity relation for the thin disk remains almost flat, with large and real scatter at all ages (sigma intrinsic = 0.20 dex). Dynamical heating of the thin disk continues throughout its life; specific in-plane dynamical effects dominate the evolution of the U and V velocities, while the W velocities remain random at all ages. When assigning thick and thin-disk membership for stars from kinematic criteria, parameters for the oldest stars should be used to characterise the thin disk.



rate research

Read More

Ages, chemical compositions, velocity vectors, and Galactic orbits for stars in the solar neighbourhood are fundamental test data for models of Galactic evolution. We aim to improve the accuracy of the Geneva-Copenhagen Survey data by implementing the recent revision of the Hipparcos parallaxes. The new parallaxes yield improved astrometric distances for 12,506 stars in the GCS. We also check the GCS II scales of T_eff and [Fe/H] and find no need for change. Introducing the new distances, we recompute M_V for 16,086 stars, and U, V, W, and Galactic orbital parameters for the 13,520 stars that also have radial-velocity measurements. We also recompute stellar ages from the Padova stellar evolution models used in GCS I-II, using the new values of M_V, and compare them with ages from the Yale-Yonsei and Victoria-Regina models. Finally, we compare the observed age-velocity relation in W with three simulated disk heating scenarios to show the potential of the data. With these revisions, the basic data for the GCS stars should now be as reliable as is possible with existing techniques. Further improvement must await consolidation of the T_eff scale from angular diameters and fluxes, and the Gaia trigonometric parallaxes. We discuss the conditions for improving computed stellar ages from new input data, and for distinguishing different disk heating scenarios from data sets of the size and precision of the GCS.
We search for solar twins in the Geneva-Copenhagen Survey (GCS) using high resolution optical spectroscopy. We initially select Sun-like stars from the GCS by absolute magnitude, b-y colour and metallicity close to the solar values. Our aim is to find the stars which are spectroscopically very close to the Sun using line depth ratios and the median equivalent widths and depths of selected lines with a range of excitation potentials. We present the ten best stars fulfilling combined photometric and spectroscopic criteria, of which six are new twins. We use our full sample of Sun-like stars to examine the calibration of the metallicity and temperature scale in the GCS. Our results give rise to the conclusion that the GCS may be offset from the solar temperature and metallicity for sun-like stars by 100K and 0.1dex, respectively.
The chemical composition of Earths atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.
The age-metallicity relation is a fundamental tool for constraining the chemical evolution of the Galactic disc. In this work we analyse the observational properties of this relation using binary stars that have not interacted consisting of a white dwarf - from which we can derive the total age of the system - and a main sequence star - from which we can derive the metallicity as traced by the [Fe/H] abundances. Our sample consists of 46 widely separated, but unresolved spectroscopic binaries identified within the Sloan Digital Sky Survey, and 189 white dwarf plus main sequence common proper motion pairs identified within the second data release of Gaia. This is currently the largest white dwarf sample for which the metallicity of their progenitors have been determined. We find a flat age-metallicity relation displaying a scatter of [Fe/H] abundances of approximately 0.5 dex around the solar metallicity at all ages. This independently confirms the lack of correlation between age and metallicity in the solar neighbourhood that is found in previous studies focused on analysing single main sequence stars and open clusters.
We derive stellar ages, from evolutionary tracks, and metallicities, from Stromgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. sample by Garnett & Kobulnicky is an expected artifact due to the construction of the original sample. We conclude that, although some of it can be attributed to stellar migration in the galactic disk, a large part of the observed scatter is intrinsic to the formation processes of stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا