Path-integral quantization of Galilean Fermi fields


Abstract in English

The Galilei-covariant fermionic field theories are quantized by using the path-integral method and five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. Firstly, we review the five-dimensional approach to the Galilean Dirac equation, which leads to the Levy-Leblond equations, and define the Galilean generating functional and Greens functions for positive- and negative-energy/mass solutions. Then, as an example of interactions, we consider the quartic self-interacting potential ${lambda} (bar{Psi} {Psi})^2$, and we derive expressions for the 2- and 4-point Greens functions. Our results are compatible with those found in the literature on non-relativistic many-body systems. The extended manifold allows for compact expressions of the contributions in $(3+1)$ space-time. This is particularly apparent when we represent the results with diagrams in the extended $(4+1)$ manifold, since they usually encompass more diagrams in Galilean $(3+1)$ space-time.

Download