No Arabic abstract
The initial-final mass relation represents a mapping between the mass of a white dwarf remnant and the mass that the hydrogen burning main-sequence star that created it once had. The relation thus far has been constrained using a sample of ~40 stars in young open clusters, ranging in initial mass from ~2.75 -- 7 Msun, and shows a general trend that connects higher mass main-sequence stars with higher mass white dwarfs. In this paper, we present CFHT/CFH12K photometric and Keck/LRIS multiobject spectroscopic observations of a sample of 22 white dwarfs in two older open clusters, NGC 7789 (t = 1.4 Gyr) and NGC 6819 (t = 2.5 Gyr). We measure masses for the highest S/N spectra by fitting the Balmer lines to atmosphere models and place the first direct constraints on the low mass end of the initial-final mass relation. Our results indicate that the observed general trend at higher masses continues down to low masses, with M_initial = 1.16 Msun main-sequence stars forming M_final = 0.53 Msun white dwarfs (including our data from the very old open cluster, NGC 6791). This extention of the relation represents a four fold increase in the total number of hydrogen burning stars for which the integrated mass loss can now be calculated, assuming a Salpeter initial mass function. The new leverage at the low mass end is used to derive a purely empirical initial-final mass relation without the need for any indirectly derived anchor points. The sample of white dwarfs in these clusters also shows several very interesting systems that we discuss further: a DB (helium atmosphere) white dwarf, a magnetic white dwarf, a DAB (mixed hydrogen/helium atmosphere or a double degenerate DA+DB) white dwarf(s), and two possible equal mass DA double degenerate binary systems.
We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four objects with cooling times, distances and proper motions consistent with membership of these clusters. We find that despite a range in age of ~100Myr the masses of the four heaviest white dwarfs in NGC3532 span the narrow mass interval M~0.9-1.0Msolar suggesting that the initial mass-final mass relation is relatively flatter over 4.5Msolar <~ M_init <~ 6.5Msolar than at immediately lower masses. Additionally, we have unearthed WD J0646-203 which is possibly the most massive cluster white dwarf identified to date. With M~1.1Msolar it seems likely to be composed of ONe and has a cooling time consistent with it having evolved from a single star.
We report the spectroscopic confirmation of four further white dwarf members of Praesepe. This brings the total number of confirmed white dwarf members to eleven making this the second largest collection of these objects in an open cluster identified to date. This number is consistent with the high mass end of the initial mass function of Praesepe being Salpeter in form. Furthermore, it suggests that the bulk of Praesepe white dwarfs did not gain a substantial recoil kick velocity from possible asymmetries in their loss of mass during the asymptotic giant branch phase of evolution. By comparing our estimates of the effective temperatures and the surface gravities of WD0833+194, WD0840+190, WD0840+205 and WD0843+184 to modern theoretical evolutionary tracks we have derived their masses to be in the range 0.72-0.76Msun and their cooling ages ~300Myrs. For an assumed cluster age of 625+/-50Myrs the infered progenitor masses are between 3.3-3.5Msun. Examining these new data in the context of the initial mass-final mass relation we find that it can be adequately represented by a linear function (a0=0.289+/-0.051, a1=0.133+/-0.015) over the initial mass range 2.7Msun to 6Msun. Assuming an extrapolation of this relation to larger initial masses is valid and adopting a maximum white dwarf mass of 1.3Msun, our results support a minimum mass for core-collapse supernovae progenitors in the range ~6.8-8.6Msun.
The initial-final mass relation (IFMR) represents the total mass lost by a star during the entirety of its evolution from the zero age main sequence to the white dwarf cooling track. The semi-empirical IFMR is largely based on observations of DA white dwarfs, the most common spectral type of white dwarf and the simplest atmosphere to model. We present a first derivation of the semi-empirical IFMR for hydrogen deficient white dwarfs (non-DA) in open star clusters. We identify a possible discrepancy between the DA and non-DA IFMRs, with non-DA white dwarfs $approx 0.07 M_odot$ less massive at a given initial mass. Such a discrepancy is unexpected based on theoretical models of non-DA formation and observations of field white dwarf mass distributions. If real, the discrepancy is likely due to enhanced mass loss during the final thermal pulse and renewed post-AGB evolution of the star. However, we are dubious that the mass discrepancy is physical and instead is due to the small sample size, to systematic issues in model atmospheres of non-DAs, and to the uncertain evolutionary history of Procyon B (spectral type DQZ). A significantly larger sample size is needed to test these assertions. In addition, we also present Monte Carlo models of the correlated errors for DA and non-DA white dwarfs in the initial-final mass plane. We find the uncertainties in initial-final mass determinations for individual white dwarfs can be significantly asymmetric, but the recovered functional form of the IFMR is grossly unaffected by the correlated errors.
The low-mass end of the stellar Initial Mass Function (IMF) is constrained by focusing on the baryon-dominated central regions of strong lensing galaxies. We study in this letter the Einstein Cross (Q2237+0305), a z=0.04 barred galaxy whose bulge acts as lens on a background quasar. The positions of the four quasar images constrain the surface mass density on the lens plane, whereas the surface brightness (H-band NICMOS/HST imaging) along with deep spectroscopy of the lens (VLT/FORS1) allow us to constrain the stellar mass content, for a range of IMFs. We find that a classical single power law (Salpeter IMF) predicts more stellar mass than the observed lensing estimates. This result is confirmed at the 99% confidence level, and is robust to systematic effects due to the choice of population synthesis models, the presence of dust, or the complex disk/bulge population mix. Our non-parametric methodology is more robust than kinematic estimates, as we do not need to make any assumptions about the dynamical state of the galaxy or its decomposition into bulge and disk. Over a range of low-mass power law slopes (with Salpeter being Gamma=+1.35) we find that at a 90% confidence level, slopes with Gamma>0 are ruled out.
The concentration-mass (c-M) relation encodes the key information of the assembly history of the dark matter halos, however its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of halo c-M relation with galaxy-galaxy lensing method, using shear catalog of the Dark Energy Camera Legacy Survey (DECaLS) Data Release 8, which covers a sky area of 9500 deg^2. The foreground lenses are selected from redMaPPer, LOWZ, and CMASS catalogs, with halo mass range from 10^{13} to 10^{15} M_sun and redshift range from z=0.08 to z=0.65. We find that the concentration decreases with the halo mass from 10^{13} to 10^{14} M_sun, but shows a trend of upturn after the pivot point of ~10^{14} M_sun. We fit the measured c-M relation with the concentration model c(M)=C_0 (M/(10^{12} M_sun/h)^{-gamma} [1+(M/M_0)^{0.4}], and get the values (C_0, gamma, log(M_0) = (5.119_{-0.185}^{0.183}, 0.205_{-0.010}^{0.010}, 14.083_{-0.133}^{0.130}), and (4.875_{-0.208}^{0.209}, 0.221_{-0.010}^{0.010}, 13.750_{-0.141}^{0.142}) for halos with 0.08<=z<0.35 and 0.35<=z<0.65, respectively. We also show that the model including an upturn is favored over a simple power-law model. Our measurement provides important information for the recent argument of massive cluster formation process.