Do you want to publish a course? Click here

Molecular Dipolar Crystals as High Fidelity Quantum Memory for Hybrid Quantum Computing

695   0   0.0 ( 0 )
 Added by Peter Rabl
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study collective excitations of rotational and spin states of an ensemble of polar molecules, which are prepared in a dipolar crystalline phase, as a candidate for a high fidelity quantum memory. While dipolar crystals are formed in the high density limit of cold clouds of polar molecules under 1D and 2D trapping conditions, the crystalline structure protects the molecular qubits from detrimental effects of short range collisions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms, and estimate their effects on gate operations, when a molecular ensemble qubit is transferred to a superconducting strip line cavity (circuit QED). In the case rotational excitations coupled by dipole-dipole interactions we identify phonons as the main limitation of the life time of qubits. We study specific setups and conditions, where the coupling to the phonon modes is minimized. Detailed results are presented for a 1D dipolar chain.



rate research

Read More

We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
We analyze a system of fermionic $^{6}$Li atoms in an optical trap, and show that an atom on demand can be prepared with ultra-high fidelity, exceeding 0.99998. This process can be scaled to many sites in parallel, providing a realistic method to initialize N qubits at ultra-high fidelity for quantum computing. We also show how efficient quantum gate operation can be implemented in this system, and how spatially resolved single-atom detection can be performed.
161 - A. Walther , L. Rippe , Y. Yan 2015
We propose and analyze a high fidelity readout scheme for a single instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different species of qubit and readout ions, and it is shown that by allowing the closest qubit ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the expected quantum fidelity of a CNOT gate in these solid state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believed are experimentally feasible with current technology, and which can be simultaneously realized.
The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the systems parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.
We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system we measure up to 97pm1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86pm4% for 1.5 mu s storage time, which is 5,000 times the pulse duration. Hence high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا