Do you want to publish a course? Click here

Extraspecial Two-Groups, Generalized Yang-Baxter Equations and Braiding Quantum Gates

268   0   0.0 ( 0 )
 Added by Eric Rowell
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every $n ge 2$. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., $d = 2$) solutions, and some simple families that include solutions for arbitrary $d ge 2$. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.
In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally, we introduce the notion of Hom-Yang-Baxter systems and obtain two kinds of Hom-Yang-Baxter systems.
245 - E.H. Saidi , M.B. Sedra 1997
The $6 = 3times 2$ huge Lie algebra $Xi$ of all local and non local differential operators on a circle is applied to the standard Adler-Kostant-Symes (AKS) R-bracket sckeme. It is shown in particular that there exist three additional Lie structures, associated to three graded modified classical Yang-Baxter(GMCYB) equations. As we know from the standard case, these structures can be used to classify in a more consitent way a wide class of integrable systems. Other algebraic properties are also presented.
117 - Li-Wei Yu , Mo-Lin Ge 2018
Starting from the Kauffman-Lomonaco braiding matrix transforming the natural basis to Bell states, the spectral parameter describing the entanglement is introduced through Yang-Baxterization. It gives rise to a new type of solutions for Yang-Baxter equation, called the type-II that differs from the familiar solution called type-I of YBE associated with the usual chain models. The Majorana fermionic version of type-II yields the Kitaev Hamiltonian. The introduced $ell_1$ -norm leads to the maximum of the entanglement by taking the extreme value and shows that it is related to the Wigners D-function. Based on the Yang-Baxter equation the 3-body S-Matrix for type-II is explicitly given. Different from the type-I solution, the type-II solution of YBE should be considered in describing quantum information. The idea is further extended to $mathbb{Z}_3$ parafermion model based on $SU(3)$ principal representation. The type-II is in difference from the familiar type-I in many respects. For example, the quantities corresponding to velocity in the chain models obey the Lorentzian additivity $frac{u+v}{1+uv}$ rather than Galilean rule $(u+v)$. Most possibly, for the type-II solutions of YBE there may not exist RTT relation. Further more, for $mathbb{Z}_3$ parafermion model we only need the rational Yang-Baxterization, which seems like trigonometric. Similar discussions are also made in terms of generalized Yang-Baxter equation with three spin spaces ${1,frac{1}{2},frac{1}{2}}$.
148 - M. Asorey , P. Facchi , V.I. Manko 2012
Some non-linear generalizations of classical Radon tomography were recently introduced by M. Asorey et al [Phys. Rev. A 77, 042115 (2008), where the straight lines of the standard Radon map are replaced by quadratic curves (ellipses, hyperbolas, circles) or quadratic surfaces (ellipsoids, hyperboloids, spheres). We consider here the quantum version of this novel non-linear approach and obtain, by systematic use of the Weyl map, a tomographic encoding approach to quantum states. Non-linear quantum tomograms admit a simple formulation within the framework of the star-product quantization scheme and the reconstruction formulae of the density operators are explicitly given in a closed form, with an explicit construction of quantizers and dequantizers. The role of symmetry groups behind the generalized tomographic maps is analyzed in some detail. We also introduce new generalizations of the standard singular dequantizers of the symplectic tomographic schemes, where the Dirac delta-distributions of operator-valued arguments are replaced by smooth window functions, giving rise to the new concept of thick quantum tomography. Applications for quantum state measurements of photons and matter waves are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا