Do you want to publish a course? Click here

Quality functions in community detection

98   0   0.0 ( 0 )
 Added by Santo Fortunato Dr
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Community structure represents the local organization of complex networks and the single most important feature to extract functional relationships between nodes. In the last years, the problem of community detection has been reformulated in terms of the optimization of a function, the Newman-Girvan modularity, that is supposed to express the quality of the partitions of a network into communities. Starting from a recent critical survey on modularity optimization, pointing out the existence of a resolution limit that poses severe limits to its applicability, we discuss the general issue of the use of quality functions in community detection. Our main conclusion is that quality functions are useful to compare partitions with the same number of modules, whereas the comparison of partitions with different numbers of modules is not straightforward and may lead to ambiguities.



rate research

Read More

Embedding a network in hyperbolic space can reveal interesting features for the network structure, especially in terms of self-similar characteristics. The hidden metric space, which can be thought of as the underlying structure of the network, is able to preserve some interesting features generally observed in real-world networks such as heterogeneity in the degree distribution, high clustering coefficient, and small-world effect. Moreover, the angular distribution of the nodes in the hyperbolic plane reveals a community structure of the embedded network. It is worth noting that, while a large body of literature compares well-known community detection algorithms, there is still no consensus on what defines an ideal community partition on a network. Moreover, heuristics for communities found on networks embedded in the hyperbolic space have been investigated here for the first time. We compare the partitions found on embedded networks to the partitions obtained before the embedding step, both for a synthetic network and for two real-world networks. The second part of this paper presents the application of our pipeline to a network of retweets in the context of the Italian elections. Our results uncover a community structure reflective of the political spectrum, encouraging further research on the application of community detection heuristics to graphs mapped onto hyperbolic planes.
Graph embedding methods are becoming increasingly popular in the machine learning community, where they are widely used for tasks such as node classification and link prediction. Embedding graphs in geometric spaces should aid the identification of network communities as well, because nodes in the same community should be projected close to each other in the geometric space, where they can be detected via standard data clustering algorithms. In this paper, we test the ability of several graph embedding techniques to detect communities on benchmark graphs. We compare their performance against that of traditional community detection algorithms. We find that the performance is comparable, if the parameters of the embedding techniques are suitably chosen. However, the optimal parameter set varies with the specific features of the benchmark graphs, like their size, whereas popular community detection algorithms do not require any parameter. So it is not possible to indicate beforehand good parameter sets for the analysis of real networks. This finding, along with the high computational cost of embedding a network and grouping the points, suggests that, for community detection, current embedding techniques do not represent an improvement over network clustering algorithms.
We consider an approach for community detection in time-varying networks. At its core, this approach maintains a small sketch graph to capture the essential community structure found in each snapshot of the full network. We demonstrate how the sketch can be used to explicitly identify six key community events which typically occur during network evolution: growth, shrinkage, merging, splitting, birth and death. Based on these detection techniques, we formulate a community detection algorithm which can process a network concurrently exhibiting all processes. One advantage afforded by the sketch-based algorithm is the efficient handling of large networks. Whereas detecting events in the full graph may be computationally expensive, the small size of the sketch allows changes to be quickly assessed. A second advantage occurs in networks containing clusters of disproportionate size. The sketch is constructed such that there is equal representation of each cluster, thus reducing the possibility that the small clusters are lost in the estimate. We present a new standardized benchmark based on the stochastic block model which models the addition and deletion of nodes, as well as the birth and death of communities. When coupled with existing benchmarks, this new benchmark provides a comprehensive suite of tests encompassing all six community events. We provide a set of numerical results demonstrating the advantages of our approach both in run time and in the handling of small clusters.
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately describe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, Clauset, Moore, and Newman, introduced a new algorithm that identifies such heterogeneities in complex networks by utilizing the hierarchy that necessarily organizes the many levels of structure. Here, we anchor their algorithm in a general community detection framework and discuss the future of community detection.
In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we introduce a Bayesian nonparametric formulation of the SBM and a corresponding algorithm to efficiently find communities in bipartite networks which parsimoniously chooses the number of communities. The biSBM improves community detection results over general SBMs when data are noisy, improves the model resolution limit by a factor of $sqrt{2}$, and expands our understanding of the complicated optimization landscape associated with community detection tasks. A direct comparison of certain terms of the prior distributions in the biSBM and a related high-resolution hierarchical SBM also reveals a counterintuitive regime of community detection problems, populated by smaller and sparser networks, where nonhierarchical models outperform their more flexible counterpart.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا