We consider Feshbach scattering of fermions in a one-dimensional optical lattice. By formulating the scattering theory in the crystal momentum basis, one can exploit the lattice symmetry and factorize the scattering problem in terms of center-of-mass and relative momentum in the reduced Brillouin zone scheme. Within a single band approximation, we can tune the position of a Feshbach resonance with the center-of-mass momentum due to the non-parabolic form of the energy band.
We study a model of two species of one-dimensional linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been investigated. Here, we present an exact solution based on the coordinate Bethe Ansatz. In the limit of infinite resonance strength, which we term the strongly interacting limit, the two species of fermions behave as free Fermi gases. In the limit of infinitely weak resonance, or the weakly interacting limit, the gases can be in different phases depending on the detuning, the relative velocities of the particles, and the particle densities. When the molecule moves faster or slower than both species of atoms, the atomic velocities get renormalized and the atoms may even become non-chiral. On the other hand, when the molecular velocity is between that of the atoms, the system may behave like a weakly interacting Lieb-Liniger gas.
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ of a corresponding periodic system, and hence display quantum critical behavior. The corresponding fluctuations render the SU(2) symmetry breaking by the confining potential irrelevant, leading to structure form factors for both correlation functions that scale with the same exponent upon increasing the system size, thus giving rise to a (quasi)supersolid.
We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations. We also find that the Rydberg excitations in the optical lattice do not destroy the phase coherence of the condensate, and our results in that system agree with the picture of localized collective Rydberg excitations including nearest-neighbour blockade.
Ultracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N. Furthermore, we estimate the temperature scale required to probe correlations associated with low-temperature SU(N) magnetism. Our findings are encouraging for the exploration of exotic large-N magnetic states in ongoing experiments.
Based on a combined quantum-classical treatment, a complete study of the strong field dynamics of H2+, i.e. including all nuclear and electronic DOF as well as dissociation and ionization, is presented. We find that the ro-vibrational nuclear dynamics enhances dissociation and, at the same time, suppresses ionization, confirming experimental observations by I. Ben-Itzhak et al. [Phys. Rev. Lett. 95, 073002 (2005)]. In addition and counter-intuitively, it is shown that for large initial vibrational excitation ionization takes place favorably at large angles between the laser polarization and molecular axis. A local ionization model delivers a transparent explanation of these findings.