We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerles conjecture on prime graphs.
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.
Using the Luthar--Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerles conjecture on prime graphs.
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group $M_{24}$. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.
We investigate the possible character values of torsion units of the normalized unit group of the integral group ring of Mathieu sporadic group $M_{22}$. We confirm the Kimmerle conjecture on prime graphs for this group and specify the partial augmentations for possible counterexamples to the stronger Zassenhaus conjecture.
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Higman-Sims simple sporadic group HS. As a consequence, we confirm the Kimmerles conjecture on prime graphs for this sporadic group.